
EcoStruxure™ Control Expert

35006144 10/2019
35
00

61
44

.2
3

www.schneider-electric.com

EcoStruxure™
Control Expert
Program Languages and Structure
Reference Manual
Original instructions

10/2019

The information provided in this documentation contains general descriptions and/or technical
characteristics of the performance of the products contained herein. This documentation is not
intended as a substitute for and is not to be used for determining suitability or reliability of these
products for specific user applications. It is the duty of any such user or integrator to perform the
appropriate and complete risk analysis, evaluation and testing of the products with respect to the
relevant specific application or use thereof. Neither Schneider Electric nor any of its affiliates or
subsidiaries shall be responsible or liable for misuse of the information contained herein. If you
have any suggestions for improvements or amendments or have found errors in this publication,
please notify us.
You agree not to reproduce, other than for your own personal, noncommercial use, all or part of
this document on any medium whatsoever without permission of Schneider Electric, given in
writing. You also agree not to establish any hypertext links to this document or its content.
Schneider Electric does not grant any right or license for the personal and noncommercial use of
the document or its content, except for a non-exclusive license to consult it on an "as is" basis, at
your own risk. All other rights are reserved.
All pertinent state, regional, and local safety regulations must be observed when installing and
using this product. For reasons of safety and to help ensure compliance with documented system
data, only the manufacturer should perform repairs to components.
When devices are used for applications with technical safety requirements, the relevant
instructions must be followed.
Failure to use Schneider Electric software or approved software with our hardware products may
result in injury, harm, or improper operating results.
Failure to observe this information can result in injury or equipment damage.
© 2019 Schneider Electric. All rights reserved.
2 35006144 10/2019

Table of Contents
Safety Information. 11
About the Book . 15

Part I General Presentation of Control Expert 19
Chapter 1 Presentation . 21

Capabilities of Control Expert . 22
User Interface . 28
Project Browser . 30
User Application and Project File Formats . 32
Configurator. 39
Data Editor. 44
Program Unit Data Editor . 53
Program Editor . 58
Function Block Diagram FBD . 62
Ladder Diagram (LD) Language . 64
General Information about SFC Sequence Language 66
Instruction List IL . 69
Structured Text ST . 70
PLC Simulator . 72
Export/Import . 73
User Documentation . 74
Debug Services . 75
Diagnostic Viewer . 82
Operator Screen . 83

Part II Application Structure. 85
Chapter 2 Description of the Available Functions for Each Type of

PLC. 87
Functions Available for the Different Types of PLC. 87

Chapter 3 Application Program Structure . 91
3.1 Description of Tasks and Processes . 92

Presentation of the Master Task . 93
Presentation of the Fast Task . 94
Presentation of Auxiliary Tasks . 95
Overview of Event Processing. 97
35006144 10/2019 3

3.2 Description of Program Units . 98
Description of Program Units . 98

3.3 Description of Sections and Subroutines . 100
Description of Sections . 101
Description of SFC sections. 103
Description of Subroutines . 105

3.4 Mono Task Execution. 106
Description of the Master Task Cycle . 107
Mono Task: Cyclic Execution . 109
Periodic Execution . 110
Control of Cycle Time. 111
Execution of Quantum Sections with Remote Inputs/Outputs 112

3.5 Multitasking Execution . 114
Multitasking Software Structure . 115
Sequencing of Tasks in a Multitasking Structure 117
Task Control. 119
Assignment of Input/Output Channels to Master, Fast and Auxiliary
Tasks . 122
Management of Event Processing . 124
Execution of TIMER-type Event Processing . 125
Input/Output Exchanges in Event Processing 130
How to Program Event Processing . 131

Chapter 4 Application Memory Structure . 133
4.1 Input Output Data Addressing Methods . 134

Input Output Data Addressing Methods . 134
4.2 Memory Structure of the Premium, Atrium and Modicon M340 PLCs . 137

Memory Structure of Modicon M340 PLCs . 138
Memory Structure of Premium and Atrium PLCs 142
Detailed Description of the Memory Zones . 144

4.3 Memory Structure of Quantum PLCs . 145
Memory Structure of Quantum PLCs . 146
Detailed Description of the Memory Zones . 149
4 35006144 10/2019

Chapter 5 Operating Modes . 151
5.1 Modicon M340 PLCs Operating Modes. 152

Processing of Power Outage and Restoral of Modicon M340 PLCs . . 153
Processing on Cold Start for Modicon M340 PLCs 155
Processing on Warm Restart for Modicon M340 PLCs 160
Automatic Start in RUN for Modicon M340 PLCs 163
Processing of State RAM on STOP Mode for Modicon M340 PLCs . . 164

5.2 Premium, Quantum PLCs Operating Modes . 165
Processing of Power Outage and Restoral for Premium/Quantum
PLCs . 166
Processing on Cold Start for Premium/Quantum PLCs. 168
Processing on Warm Restart for Premium/Quantum PLCs 172
Automatic Start in RUN for Premium/Quantum 175

5.3 PLC HALT Mode . 176
PLC HALT Mode . 176

Part III Data Description . 177
Chapter 6 General Overview of Data . 179

General . 180
General Overview of the Data Type Families 181
Overview of Data Instances. 184
Overview of the Data References . 186

Chapter 7 Data Types . 187
7.1 Elementary Data Types (EDT) in Binary Format 188

Overview of Data Types in Binary Format. 189
Boolean Types. 191
Integer Types. 197
The Time Type . 199

7.2 Elementary Data Types (EDT) in BCD Format 200
Overview of Data Types in BCD Format . 201
The Date Type. 203
The Time of Day (TOD) Type . 204
The Date and Time (DT) Type. 205

7.3 Elementary Data Types (EDT) in Real Format 206
Presentation of the Real Data Type . 206

7.4 Elementary Data Types (EDT) in Character String Format 211
Overview of Data Types in Character String Format 211
35006144 10/2019 5

7.5 Elementary Data Types (EDT) in Bit String Format 214
Overview of Data Types in Bit String Format . 215
Bit String Types . 216

7.6 Derived Data Types (DDT/IODDT/Device DDT) 218
Arrays. 219
Structures. 222
Overview of the Derived Data Type family (DDT) 223
DDT: Mapping Rules . 225
Overview of Input/Output Derived Data Types (IODDT) 229
Overview of Device Derived Data Types (Device DDT). 231
Device DDT Instance Naming Rule . 232

7.7 Function Block Data Types (DFB\EFB) . 235
Overview of Function Block Data Type Families 236
Characteristics of Function Block Data Types (EFB\DFB). 238
Characteristics of Elements Belonging to Function Blocks 240

7.8 Generic Data Types (GDT) . 243
Overview of Generic Data Types . 243

7.9 Data Types Belonging to Sequential Function Charts (SFC). 245
Overview of the Data Types of the Sequential Function Chart Family. 245

7.10 Compatibility Between Data Types . 247
Compatibility Between Data Types . 247

7.11 Reference Data Type Declarations . 251
Reference Data Type Declarations . 251

Chapter 8 Data Instances . 255
Data Type Instances . 256
Data Instance Attributes. 260
Direct Addressing Data Instances . 263

Chapter 9 Data References . 271
References to Data Instances by Value. 272
References to Data Instances by Name . 274
References to Data Instances by Address. 277
Data Naming Rules . 281

Part IV Programming Language. 283
Chapter 10 Function Block Language FBD. 285

General Information about the FBD Function Block Language 286
Elementary Functions, Elementary Function Blocks, Derived Function
Blocks and Procedures (FFBs) . 288
Subroutine Calls. 298
6 35006144 10/2019

Control Elements . 299
Link . 300
Text Object . 302
Execution Sequence of the FFBs . 303
Change Execution Sequence . 306
Loop Planning . 311

Chapter 11 Ladder Diagram (LD) . 313
General Information about the LD Ladder Diagram Language 314
Contacts . 317
Coils. 318
Elementary Functions, Elementary Function Blocks, Derived Function
Blocks and Procedures (FFBs) . 320
Control Elements . 330
Operate Blocks and Compare Blocks . 331
Links . 333
Text Object . 336
Edge Recognition . 337
Execution Sequence and Signal Flow . 346
Loop Planning . 348
Change Execution Sequence . 350

Chapter 12 SFC Sequence Language . 355
12.1 General Information about SFC Sequence Language 356

General Information about SFC Sequence Language 357
Link Rules . 361

12.2 Steps and Macro Steps . 362
Step . 363
Macro Steps and Macro Sections . 366

12.3 Actions and Action Sections . 370
Action. 371
Action Section . 373
Qualifier . 374

12.4 Transitions and Transition Sections . 376
Transition. 377
Transition Section . 379

12.5 Jump . 381
Jump . 381

12.6 Link . 382
Link . 382
35006144 10/2019 7

12.7 Branches and Merges . 383
Alternative Branches and Alternative Joints. 384
Parallel Branch and Parallel Joint . 385

12.8 Text Objects . 386
Text Object. 386

12.9 Single-Token . 387
Execution Sequence Single-Token . 388
Alternative String . 389
Sequence Jumps and Sequence Loops . 390
Parallel Strings . 393
Asymmetric Parallel String Selection . 395

12.10 Multi-Token . 398
Multi-Token Execution Sequence . 399
Alternative String . 400
Parallel Strings . 403
Jump into a Parallel String . 407
Jump out of a Parallel String . 408

Chapter 13 Instruction List (IL) . 413
13.1 General Information about the IL Instruction List 414

General Information about the IL Instruction List 415
Operands . 419
Modifier . 421
Operators . 423
Subroutine Call. 432
Labels and Jumps . 433
Comment . 435

13.2 Calling Elementary Functions, Elementary Function Blocks, Derived
Function Blocks and Procedures . 436
Calling Elementary Functions . 437
Calling Elementary Function Blocks and Derived Function Blocks . . . 442
Calling Procedures. 454

Chapter 14 Structured Text (ST). 461
14.1 General Information about the Structured Text ST 462

General Information about Structured Text (ST) 463
Operands . 466
Operators . 468
8 35006144 10/2019

14.2 Instructions . 473
Instructions . 474
Assignment . 475
Select Instruction IF...THEN...END_IF . 477
Select Instruction ELSE. 478
Select Instruction ELSIF...THEN . 479
Select Instruction CASE...OF...END_CASE . 480
Repeat Instruction FOR...TO...BY...DO...END_FOR. 481
Repeat Instruction WHILE...DO...END_WHILE. 483
Repeat Instruction REPEAT...UNTIL...END_REPEAT 484
Repeat Instruction EXIT . 485
Subroutine Call . 486
RETURN . 487
Empty Instruction. 488
Labels and Jumps . 489
Comment . 490

14.3 Calling Elementary Functions, Elementary Function Blocks, Derived
Function Blocks and Procedures. 491
Calling Elementary Functions . 492
Call Elementary Function Block and Derived Function Block 498
Procedures . 507

Part V User Function Blocks (DFB) 513
Chapter 15 Overview of User Function Blocks (DFB) 515

Introduction to User Function Blocks. 516
Implementing a DFB Function Block . 518

Chapter 16 Description of User Function Blocks (DFB) 521
Definition of DFB Function Block Internal Data 522
DFB Parameters . 524
DFB Variables . 528
DFB Code Section. 529

Chapter 17 User Function Blocks (DFB) Instance. 531
Creation of a DFB Instance . 532
Execution of a DFB Instance . 533
Programming Example for a Derived Function Block (DFB) 534
35006144 10/2019 9

Chapter 18 Use of the DFBs from the Different Programming
Languages . 537
Rules for Using DFBs in a Program . 538
Use of IODDTs in a DFB . 541
Use of a DFB in a Ladder Language Program. 544
Use of a DFB in a Structured Text Language Program 546
Use of a DFB in an Instruction List Program . 549
Use of a DFB in a Program in Function Block Diagram Language . . . 553

Chapter 19 User Diagnostics DFB . 555
Presentation of User Diagnostic DFBs. 555

Chapter 20 Implicit Type Conversion in Control Expert 557
Control Expert Implicit Type Conversion . 558
Control Expert Differences from IEC Recommendations. 560

Appendices . 563
Appendix A IEC Compliance . 565

A.1 General Information regarding IEC 61131-3 . 566
General information about IEC 61131-3 Compliance 566

A.2 IEC Compliance Tables . 568
Common elements . 569
IL language elements. 581
ST language elements . 583
Common graphical elements . 584
LD language elements . 585
Implementation-dependent parameters . 586
Error Conditions . 589

A.3 Extensions of IEC 61131-3 . 591
Extensions of IEC 61131-3, 2nd Edition . 591

A.4 Textual language syntax . 593
Textual Language Syntax . 593

Glossary . 595
Index . 619
10 35006144 10/2019

Safety Information
Important Information

NOTICE
Read these instructions carefully, and look at the equipment to become familiar with the device
before trying to install, operate, service, or maintain it. The following special messages may appear
throughout this documentation or on the equipment to warn of potential hazards or to call attention
to information that clarifies or simplifies a procedure.
35006144 10/2019 11

PLEASE NOTE
Electrical equipment should be installed, operated, serviced, and maintained only by qualified
personnel. No responsibility is assumed by Schneider Electric for any consequences arising out of
the use of this material.
A qualified person is one who has skills and knowledge related to the construction and operation
of electrical equipment and its installation, and has received safety training to recognize and avoid
the hazards involved.

BEFORE YOU BEGIN
Do not use this product on machinery lacking effective point-of-operation guarding. Lack of
effective point-of-operation guarding on a machine can result in serious injury to the operator of
that machine.

This automation equipment and related software is used to control a variety of industrial processes.
The type or model of automation equipment suitable for each application will vary depending on
factors such as the control function required, degree of protection required, production methods,
unusual conditions, government regulations, etc. In some applications, more than one processor
may be required, as when backup redundancy is needed.
Only you, the user, machine builder or system integrator can be aware of all the conditions and
factors present during setup, operation, and maintenance of the machine and, therefore, can
determine the automation equipment and the related safeties and interlocks which can be properly
used. When selecting automation and control equipment and related software for a particular
application, you should refer to the applicable local and national standards and regulations. The
National Safety Council's Accident Prevention Manual (nationally recognized in the United States
of America) also provides much useful information.
In some applications, such as packaging machinery, additional operator protection such as point-
of-operation guarding must be provided. This is necessary if the operator's hands and other parts
of the body are free to enter the pinch points or other hazardous areas and serious injury can occur.
Software products alone cannot protect an operator from injury. For this reason the software
cannot be substituted for or take the place of point-of-operation protection.

WARNING
UNGUARDED EQUIPMENT
 Do not use this software and related automation equipment on equipment which does not have

point-of-operation protection.
 Do not reach into machinery during operation.
Failure to follow these instructions can result in death, serious injury, or equipment damage.
12 35006144 10/2019

Ensure that appropriate safeties and mechanical/electrical interlocks related to point-of-operation
protection have been installed and are operational before placing the equipment into service. All
interlocks and safeties related to point-of-operation protection must be coordinated with the related
automation equipment and software programming.
NOTE: Coordination of safeties and mechanical/electrical interlocks for point-of-operation
protection is outside the scope of the Function Block Library, System User Guide, or other
implementation referenced in this documentation.

START-UP AND TEST
Before using electrical control and automation equipment for regular operation after installation,
the system should be given a start-up test by qualified personnel to verify correct operation of the
equipment. It is important that arrangements for such a check be made and that enough time is
allowed to perform complete and satisfactory testing.

Follow all start-up tests recommended in the equipment documentation. Store all equipment
documentation for future references.
Software testing must be done in both simulated and real environments.
Verify that the completed system is free from all short circuits and temporary grounds that are not
installed according to local regulations (according to the National Electrical Code in the U.S.A, for
instance). If high-potential voltage testing is necessary, follow recommendations in equipment
documentation to prevent accidental equipment damage.
Before energizing equipment:
 Remove tools, meters, and debris from equipment.
 Close the equipment enclosure door.
 Remove all temporary grounds from incoming power lines.
 Perform all start-up tests recommended by the manufacturer.

WARNING
EQUIPMENT OPERATION HAZARD
 Verify that all installation and set up procedures have been completed.
 Before operational tests are performed, remove all blocks or other temporary holding means

used for shipment from all component devices.
 Remove tools, meters, and debris from equipment.
Failure to follow these instructions can result in death, serious injury, or equipment damage.
35006144 10/2019 13

OPERATION AND ADJUSTMENTS
The following precautions are from the NEMA Standards Publication ICS 7.1-1995 (English
version prevails):
 Regardless of the care exercised in the design and manufacture of equipment or in the selection

and ratings of components, there are hazards that can be encountered if such equipment is
improperly operated.

 It is sometimes possible to misadjust the equipment and thus produce unsatisfactory or unsafe
operation. Always use the manufacturer’s instructions as a guide for functional adjustments.
Personnel who have access to these adjustments should be familiar with the equipment
manufacturer’s instructions and the machinery used with the electrical equipment.

 Only those operational adjustments actually required by the operator should be accessible to
the operator. Access to other controls should be restricted to prevent unauthorized changes in
operating characteristics.
14 35006144 10/2019

About the Book
At a Glance

Document Scope
This manual describes the elements necessary for the programming of M340, M580, Momentum,
Premium, Atrium and Quantum PLCs using the EcoStruxure Control Expert programming
workshop.

Validity Note
This documentation is valid for EcoStruxure™ Control Expert 14.1 or later.

Related Documents

Title of documentation Reference number
EcoStruxure™ Control Expert, Operating Modes 33003101 (English),

33003102 (French),
33003103 (German),
33003104 (Spanish),
33003696 (Italian),
33003697 (Chinese)

EcoStruxure™ Control Expert, System Bits and Words,
Reference Manual

EIO0000002135 (English),
EIO0000002136 (French),
EIO0000002137 (German),
EIO0000002138 (Italian),
EIO0000002139 (Spanish),
EIO0000002140 (Chinese)

Modicon M580, Hardware, Reference Manual EIO0000001578 (English),
EIO0000001579 (French),
EIO0000001580 (German),
EIO0000001582 (Italian),
EIO0000001581 (Spanish),
EIO0000001583 (Chinese)

Modicon M580, RIO Modules, Installation and Configuration
Guide

EIO0000001584 (English),
EIO0000001585 (French),
EIO0000001586 (German),
EIO0000001587 (Italian),
EIO0000001588 (Spanish),
EIO0000001589 (Chinese),
35006144 10/2019 15

Modicon M340, CANopen, Setup Manual 35013944 (English),
35013945 (French),
35013946 (German),
35013948 (Italian),
35013947 (Spanish),
35013949 (Chinese)

Modicon X80, Discrete Input/Output Modules, User Manual 35012474 (English),
35012475 (German),
35012476 (French),
35012477 (Spanish),
35012478 (Italian),
35012479 (Chinese)

Modicon X80, Analog Input/Output Modules, User Manual 35011978 (English),
35011979 (German),
35011980 (French),
35011981 (Spanish),
35011982 (Italian),
35011983 (Chinese)

Quantum using EcoStruxure™ Control Expert, Hardware
Reference Manual

35010529 (English),
35010530 (French),
35010531 (German),
35013975 (Italian),
35010532 (Spanish),
35012184 (Chinese)

Quantum using EcoStruxure™ Control Expert, Hot Standby
System, User Manual

35010533 (English),
35010534 (French),
35010535 (German),
35013993 (Italian),
35010536 (Spanish),
35012188 (Chinese)

EcoStruxure™ Control Expert, I/O Management, Block Library 33002531 (English),
33002532 (French),
33002533 (German),
33003684 (Italian),
33002534 (Spanish),
33003685 (Chinese)

Title of documentation Reference number
16 35006144 10/2019

You can download these technical publications and other technical information from our website
at www.schneider-electric.com/en/download.

Product Related Information

EcoStruxure™ Control Expert, System, Block Library 33002539 (English),
33002540 (French),
33002541 (German),
33003688 (Italian),
33002542 (Spanish),
33003689 (Chinese)

EcoStruxure™ Control Expert, Diagnostics, Block Library 33002523 (English),
33002524 (French),
33002525 (German),
33003680 (Italian),
33002526 (Spanish),
33003681 (Chinese)

Title of documentation Reference number

WARNING
UNINTENDED EQUIPMENT OPERATION
The application of this product requires expertise in the design and programming of control
systems. Only persons with such expertise should be allowed to program, install, alter, and apply
this product.
Follow all local and national safety codes and standards.
Failure to follow these instructions can result in death, serious injury, or equipment damage.
35006144 10/2019 17

https://www.schneider-electric.com/en/download

18 35006144 10/2019

EcoStruxure™ Control Expert
 General Presentation
35006144 10/2019
General Presentation of Control Expert

Part I
General Presentation of Control Expert
35006144 10/2019 19

General Presentation
20 35006144 10/2019

EcoStruxure™ Control Expert
Presentation
35006144 10/2019
Presentation

Chapter 1
Presentation

Overview
This chapter describes the general design and behavior of a project created with Control Expert.

What Is in This Chapter?
This chapter contains the following topics:

Topic Page
Capabilities of Control Expert 22
User Interface 28
Project Browser 30
User Application and Project File Formats 32
Configurator 39
Data Editor 44
Program Unit Data Editor 53
Program Editor 58
Function Block Diagram FBD 62
Ladder Diagram (LD) Language 64
General Information about SFC Sequence Language 66
Instruction List IL 69
Structured Text ST 70
PLC Simulator 72
Export/Import 73
User Documentation 74
Debug Services 75
Diagnostic Viewer 82
Operator Screen 83
35006144 10/2019 21

Presentation
Capabilities of Control Expert

Hardware Platforms
Control Expert supports the following hardware platforms:
 Modicon M340
 Modicon M580
 Quantum
 Momentum
 Premium
 Atrium

Programming Languages
Control Expert provides the following programming languages for creating the user program:
 Function Block Diagram FBD
 Ladder Diagram (LD) language
 Instruction List IL
 Structured Text ST
 Sequential Control SFC
 Ladder Logic 984 (LL984)
All of these programming languages can be used together in the same project.
All these languages (except LL984) conform to IEC 61131-3.

Block Libraries
The blocks that are included in the delivery of Control Expert extensive block libraries extend from
blocks for simple boolean operations, through blocks for strings and array operations to blocks for
controlling complex control loops.
For a better overview, the different blocks are arranged in libraries, which are then broken down
into families.
The blocks can be used in the programming languages FBD, LD, IL, and ST.
22 35006144 10/2019

Presentation
Elements of a Program
A program can be constructed from:
 a master task (MAST)
 a FAST task (not available for Momentum)
 one to 4 AUX tasks (not available for Modicon M340 and Momentum)
 Program Units which are assigned one of the defined tasks (available for Modicon M580 and

Modicon M340)
 sections, which are assigned one of the defined tasks
 sections for processing time controlled events (Timerx, not available for Momentum)
 sections for processing hardware controlled events (EVTx, not available for Momentum)
 subroutine sections (SR)

Software Licenses
There is one Control Expert installation setup (.iso file) and the license determines the version that
can be launched.
The following software versions are available:
 Control Expert S
 Control Expert L
 Control Expert XL
 Control Expert XL with M580 Safety
The M580 Safety CPUs are included in a Safety add-on available for Control Expert L and XL.
Two types of licenses are available to activate Control Expert:
 Node-locked license for single use on a local PC.
 Floating license for multiple uses of an authorized number of PCs in a network connected to the

Enterprise License Server.
For detailed information on license activation and/or registration, refer to EcoStruxure™ Control
Expert, Installation Manual.
35006144 10/2019 23

Presentation
Performance Scope
This table shows the main characteristics of the individual software versions:

Control Expert S Control Expert L Control Expert L +
Safety add-on

Control Expert
XL

Control Expert XL +
Safety add-on

Programming languages
Function Block
Diagram FBD

+ + + + +

Ladder Diagram
(LD) language

+ + + + +

Instruction List IL + + +(2) + +(2)

Structured Text
ST

+ + +(2) + +(2)

Sequential
Language SFC

+ + +(2) + +(2)

Ladder Logic 984
(LL984)

+ + + + +

Libraries(1)

Standard library + + +(2) + +(2)

Control library + + +(2) + +(2)

Communication
library

+ + +(2) + +(2)

Diagnostics
library

+ + +(2) + +(2)

I/O management
library

+ + +(2) + +(2)

System library + + +(2) + +(2)

Motion control
drive library

- + +(2) + +(2)

TCP Open library - optional optional(2) optional optional(2)

Obsolete library + + +(2) + +(2)

MFB library + + +(2) + +(2)

Safety library - - + - +
+ = available
- = not available
(1) = Availability of the blocks depends on the hardware platforms.
(2) = Available on all PLC except platforms M580 Safety.
24 35006144 10/2019

Presentation
Memory card file
management
library

+ + +(2) + +(2)

General information
Create and use
data structures
(DDTs)

+ + +(2) + +(2)

Create and use
Derived Function
Blocks (DFBs)

+ + + + +

Project browser
with structural
and/or functional
view

+ + + + +

Managing access
rights

+ + + + +

Operator screen + + + + +
Diagnostic viewer + + + + +
System
diagnostics

+ + + + +

Project
diagnostics

+ + +(2) + +(2)

Trending Tool + + + + +
Application
converter

PL7 converter
Concept
Converter
Partial
conversion

PL7 converter
Concept
Converter

PL7 converter
Concept
Converter

PL7 converter
Concept
Converter

PL7 converter
Concept Converter

Managing multi-
stations

- - - - -

Control Expert S Control Expert L Control Expert L +
Safety add-on

Control Expert
XL

Control Expert XL +
Safety add-on

+ = available
- = not available
(1) = Availability of the blocks depends on the hardware platforms.
(2) = Available on all PLC except platforms M580 Safety.
35006144 10/2019 25

Presentation
Supported platforms
Modicon M340 All CPUs All CPUs All CPUs All CPUs All CPUs
Modicon M580 - BMEP5810••

BMEP5820••
BMEP5830••
BMEH582040

BMEP5810••
BMEP5820••
BMEP5830••
BMEH582040
BMEP582040S
BMEH582040S

BMEP5810••
BMEP5820••
BMEP5830••
BMEP5840••
BMEP585040
BMEP586040
BMEH582040
BMEH584040
BMEH586040

BMEP5810••
BMEP5820••
BMEP5830••
BMEP5840••
BMEP585040
BMEP586040
BMEH582040
BMEH584040
BMEH586040
BMEP582040S
BMEP584040S
BMEH582040S
BMEH584040S
BMEH586040S

Momentum 171CBU78090
171CBU98090
171CBU98091

171CBU78090
171CBU98090
171CBU98091

171CBU78090
171CBU98090
171CBU98091

171CBU78090
171CBU98090
171CBU98091

171CBU78090
171CBU98090
171CBU98091

Premium - All CPUs except:
P57 554M
P57 5634M
P57 6634M

All CPUs except:
P57 554M
P57 5634M
P57 6634M

All CPUs All CPUs

Quantum - 140CPU31110
140CPU43412
U/A*
140CPU53414
U/A*
* Upgrade using
OS Loader

140CPU31110
140CPU43412 U/
A*
140CPU53414
U/A*
* Upgrade using
OS Loader

140CPU31110
140CPU43412
U/A

140CPU53414
U/A

140CPU65150
140CPU65160
140CPU65260
140CPU65860
140CPU67060
140CPU67160
140CPU67260
140CPU67261
140CPU67861

140CPU31110
140CPU43412 U/A
140CPU53414 U/A
140CPU65150
140CPU65160
140CPU65260
140CPU65860
140CPU67060
140CPU67160
140CPU67260
140CPU67261
140CPU67861

Atrium - All CPUs All CPUs All CPUs All CPUs
Simulator + + + + +

Control Expert S Control Expert L Control Expert L +
Safety add-on

Control Expert
XL

Control Expert XL +
Safety add-on

+ = available
- = not available
(1) = Availability of the blocks depends on the hardware platforms.
(2) = Available on all PLC except platforms M580 Safety.
26 35006144 10/2019

Presentation
Naming Convention
In the rest of this document, "Control Expert" is used as general term for "Control Expert S",
"Control Expert L", and "Control Expert XL", with or without Safety add-on.

Openness
Hyperlinks + + + + +
Control Expert
Server (for OFS,
UAG)

+ + + + +

Software components contained in the software package
Documentation
as context help
and PDF

+ + + + +

OS Loader tool +
HW firmware

+ + + + +

Unity Loader + + + + +

Control Expert S Control Expert L Control Expert L +
Safety add-on

Control Expert
XL

Control Expert XL +
Safety add-on

+ = available
- = not available
(1) = Availability of the blocks depends on the hardware platforms.
(2) = Available on all PLC except platforms M580 Safety.
35006144 10/2019 27

Presentation
User Interface

Overview
The user interface consists of several, configurable windows and toolbars.
User interface:
28 35006144 10/2019

Presentation
Legend:

Number Description
1 Menu bar (see EcoStruxure™ Control Expert, Operating Modes)
2 Toolbar (see EcoStruxure™ Control Expert, Operating Modes)
3 Project Browser (see EcoStruxure™ Control Expert, Operating Modes)
4 Editor window (programming language editors, data editor, etc.)
5 Register tabs for direct access to the editor window
6 Information window (see EcoStruxure™ Control Expert, Operating Modes) (provides information

about errors which have occurred, signal tracking, import functions, etc.)
7 Status bar (see EcoStruxure™ Control Expert, Operating Modes)
35006144 10/2019 29

Presentation
Project Browser

Introduction
The Project Browser displays all project parameters. The view can be shown as structural
(topological) and/or functional view.

Structural View
The project browser offers the following features in the structural view:
 Creation and deletion of elements
 Symbol showing if sections and Program Units are protected.
 The section symbol shows the section programming language (in case of an empty section the

symbol is grey)
 View the element properties
 Creation of user directories
 Launching the different editors
 Start the import/export function
30 35006144 10/2019

Presentation
Functional View
The project browser offers the following features in functional view:
 Creation of functional modules
 Insertion of Program Units, sections, animation tables etc. using drag and drop from the

structural view
 Creation of program elements (Program Units, sections)
 View the element properties
 Launching the different editors
 The section symbol shows the section programming language and other attributes
35006144 10/2019 31

Presentation
User Application and Project File Formats

Introduction
Control Expert manages four types of files for storing user applications and projects. Each type of
file can be used according to specific requirements.
File types can be identified by their extension:
 *.STU: File
 *.STA: Archived Application File
 *.XEF: Application Exchange File
 *.ZEF: Full Application Exchange File

STU File
This file type is used for daily working tasks. This format is used by default when opening or saving
a user project.
The following table presents the STU file advantages and drawbacks:

¹ Each time a STU file is saved, a backup copy is also created, with the same name as the STU
file, and the extension BAK files. By changing the file extension from BAK to STU, it is possible to
revert to the state the project was, the last time it was saved. BAK files are stored in the same folder
as the project STU file.

Advantages Drawbacks

 The project can be saved at any stage (consistent or

inconsistent) through the default command.

 Not convenient when transferring project due to

the very large size of the file.

 Project saving and opening is fast as the entire

internal database is present in the file.

 Not compatible when updating Control Expert

from one version to another.
 Automatic creation of BAK files¹
32 35006144 10/2019

Presentation
STA File
This file type is used for archiving projects and can be created only after the project has been
generated. This file type allows forward compatibility between the different versions of
Control Expert.
There are 2 ways to create an STA file:
 STA file can be created manually by accessing the File → Save Archive menu in the

Control Expert main window.
 STA file is created automatically every time the project is saved as a STU file if it is in Built state.

NOTE: The STA file created automatically is saved into the same directory and with the same
file name as the STU project file, except that a “.Auto” suffix is appended to the file name. If an
existing automatic STA file already exists, it is overwritten without any confirmation.
NOTE: If the project is in Built state, saving a STU file through a Control Expert Server creates
a STA file as well.

The following table presents the STA file advantages and drawbacks:

Advantages Drawbacks

 Fast project saving.

 Can be created only after the project has

been generated.

 Projects can be shared vie e-mail or low size memory

supports.

 Opening of the project is long, as the

project file is rebuilt before operation.

 Capability to connect in Equal Online Mode to the PLC

after opening the project on a new version of
Control Expert. For additional information, see
Connection/Disconnection (see EcoStruxure™ Control
Expert, Operating Modes).

 Allow online modifications with the PLC without any prior

download into the PLC.

 Generated STA file is compatible with all Control Expert

versions.
NOTE: In order to load a STA file created with another
version of Control Expert, all the features used in the
application have to be supported by the current version.
35006144 10/2019 33

Presentation
Create Archived Application File (*.STA)
The following table describes the procedure for generating *.STA files:

NOTE: The Save Archive function is only available if:

 The project has been generated.
 In Tools → Project Settings, in the Upload Information section if Include is selected, at least one

of the two check boxes underneath must be checked.

Restoring Archived Application File (*.STA)
This restoration consists of importing the *.STA files previously created and stored. The *.STA files
are used when the PLC cannot be stopped. To restore *.STA files follow the procedure below for
each project:

Step Action
1 Launch the current Control Expert software:

Start → Programs → EcoStruxure Control Expert → Control Expert.
2 Open the project (*.STU file):

1. File → Open.
2. Select the project (*.STU file).
3. Click Open.

3 File → Save Archive, see note below.
4 Choose a location for the file to be saved. Do not save files in the default Schneider Electric directory:

C:\Program Files\Schneider Electric\Control Expert
Files saved in this directory may be deleted during Control Expert installation.

5 Click Save.
6 Remember the location where the *.STA file is stored on the terminal as it is needed when recovering

the project.

Step Action
1 Launch Control Expert:

Start → Programs → EcoStruxure Control Expert → Control Expert.
2 Open the *.STA file from File → Open menu.

The file type selected must be Archived Application File (STA).
3 Click Open.
4 Save the project as an *.STU file.
34 35006144 10/2019

Presentation
XEF File
This file type is used for exporting projects in an XML source format and can be created at any
stage of a project.
The following table presents the XEF file advantages and drawbacks:

Advantages Drawbacks

 The XML source format ensures project

compatibility with any version of
Control Expert.

 Medium size.

 Opening of the project takes time while the project is

imported before operation.

 Generation of the project is mandatory to re-assemble the

project binary code.

 Operating with the PLC requires to rebuild all the project and

perform a download in the processor.

 Connecting to the PLC in Equal Online mode with an XEF

file is not possible. For additional information, see
Connection/Disconnection (see EcoStruxure™ Control
Expert, Operating Modes).
35006144 10/2019 35

Presentation
ZEF File
This file type is used for exporting projects with global DTMs configuration and can be created at
any stage of a project. For details on project export/import, refer to chapter Import / Export
(see EcoStruxure™ Control Expert, Operating Modes).
The following table presents the ZEF file advantages and drawbacks:

Create Application Exchange File (*.ZEF or *.XEF)
The following table describes the procedure for generating *.ZEF or *.XEF files:

Advantages Drawbacks

 The ZEF format ensures project

compatibility with any version of
Control Expert.

 Medium size.

 Opening of the project takes time while the project is

imported before operation.

 Generation of the project is mandatory to re-assemble the

project binary code.

 Operating with the PLC requires to rebuild all the project

and perform a download in the processor.

 Connecting to the PLC in Equal Online mode with a ZEF file

is not possible. For additional information, see
Connection/Disconnection (see EcoStruxure™ Control
Expert, Operating Modes).

Step Action
1 Launch the current Control Expert software:

Start → Programs → EcoStruxure Control Expert → Control Expert.
2 Open the project (*.STU file):

1. File → Open.
2. Select the project (*.STU file).
3. Click Open.

3 File → Export Project.
4 Choose a location for the file to be saved. Do not save files in the default Schneider Electric

directory:
C:\Program Files\Schneider Electric\Control Expert
Files saved in this directory may be deleted during Control Expert installation.

5 Click Export and select the export file format (*.ZEF or *.XEF).
6 Remember the location where the *.ZEF or *.XEF file is stored on the workstation as it is needed

when recovering the project.
36 35006144 10/2019

Presentation
Restoring Application Exchange File (*.ZEF or *.XEF)
This restoration consists of importing the *.ZEF or *.XEF files previously created and stored.
Importing from a ZEF or XEF format involves the re-generation of the project. To restore *.ZEF or
*.XEF files follow the procedure below for each project:

Compatibility Information
The STU files are not compatible across Control Expert versions. In order to use a project with
different Control Expert versions, users must either store, the:
 Archived Application Files (STA):

With the STA file, it is possible to reuse the current built project with the new Control Expert
version installed on the computer.

 Application Exchange Files (ZEF):
The ZEF file must be used if the project has been built.

 Application Exchange Files (XEF):
The XEF file must be used if the project has been built.

Step Action
1 Launch Control Expert:

Start → Programs → EcoStruxure Control Expert → Control Expert.
2 Open the *.ZEF or *.XEF file from File → Open menu.

The file type selected must be Full Application Exchange File (*.ZEF) or Application Exchange File
(*.XEF).

3 Click Open.
4 Save the project as an *.STU file.
35006144 10/2019 37

Presentation
Comparative File Types
The following table gives a summary of the 4 file types:

(1): Compressed files.
(2): The project needs to be first uploaded into the PLC.
(3): The project can be saved only if it has been generated.
NOTE: The values in the table represent a ratio between file types, where the STU value is the
reference.

File Types STU STA XEF ZEF
Binary applications Yes Yes No No
Source applications Yes Yes Yes Yes
Internal database Yes No No No
Comparative file size 10, see (1) 0.03, see (1) 3 3
Comparative time to save 10 1.6 6 6
Comparative time to open 1 10 10 10
Connection to the PLC in
Equal Online mode

Possible Possible Not possible, see (2) Not possible, see (2)

File backup Possible Possible, see (3) Possible Possible
38 35006144 10/2019

Presentation
Configurator

Configurator Window
The configurator window is split into two windows:
 Catalog window

A module can be selected from this window and directly inserted in the graphical representation
of the PLC configuration by dragging and dropping.

 Graphical representation of the PLC configuration
Representation of the Configurator window:

One of the following shortcut menus is called depending on the position of the mouse pointer:
 Mouse pointer on the background allows among others:
 Change CPU,
 Selection of different Zoom factors.

 Mouse pointer on the module allows among others:
 Access to editor functions (delete, copy, move),
 Open the module configuration for defining the module specific parameters,
 Show the I/O properties and the total current.

 Mouse pointer on an empty slot allows among others:
 Insert a module from the catalog,
 Insert a previously copied module including its defined properties.
35006144 10/2019 39

Presentation
Module Configuration
The module configuration window (called via the modules shortcut menu or a double-click on the
module) is used to configure the module. This also includes channel selection, selection of
functions for the channel selected, assignment of State RAM addresses (only Quantum) etc.
Module configuration window for a Premium I/O module:
40 35006144 10/2019

Presentation
Module Properties
The module properties window (called via the modules shortcut menu) shows the modules
properties such as the power consumption, number of I/O points (only Premium) and more.
The module properties window for the power supply shows the total current of the rack:
35006144 10/2019 41

Presentation
Network Configuration
The network configuration is called via the communications folder.
Network configuration:

The network configuration windows allow among others:
 Creation of networks
 Network analysis
 Printout of the network configuration
42 35006144 10/2019

Presentation
A window for configuring a network:

After configuration the network is assigned a communications module.
35006144 10/2019 43

Presentation
Data Editor

Introduction
The data editor offers the following features:
 Declaration of variable instances
 Definition of derived data types (DDTs)
 Definition of Device derived data types (Device DDTs)
 Instance declaration of elements and derived function blocks (EFBs/DFBs)
 Definition of derived function block (DFBs) parameters
The following functions are available in all tabs of the data editor:
 Copy, Cut, Paste with the following restrictions:
 Edit → Cut menu command is greyed in every tabs.
 Right-click Cut on a variable is greyed in every tabs
 Edit → Copy and Edit → Paste menu commands are not greyed but are not working in DDT

Types and DFB Types tabs.
 Right-click Copy and right-click Paste on a variable are greyed in DDT Types, Function

Blocks, and DFB Types tabs.
 Expand/collapse structured data
 Sorting according to Type, Symbol, Address etc.
 Filter
 Inserting, deleting and changing the position of columns
 Drag and Drop between the data editor and the program editors
 Undo the last change
 Export/Import
44 35006144 10/2019

Presentation
Variables
The Variables tab is used for declaring variables.
Variables tab:

The following functions are available:
 Defining a symbol for variables
 Assigning data types
 Own selection dialog box for derived data types
 Assignment of an address
 Automatic symbolization of I/O variables
 Assignment of an initial value
 Entering a comment
 View all properties of a variable in a separate properties dialog box
35006144 10/2019 45

Presentation
Hardware Dependent Data Types (IODDT)
IODDTs are used to assign the complete I/O structure of a module to an individual variable.
Assignment of IODDTs:

The following functions are available:
 Complete I/O structures can be assigned with individual variables using IO DDTs
 After entering the variables addresses, all elements of the structure are automatically assigned

with the correct input/output bit or word
 Because it is possible to assign addresses later on, standard modules can be simply created

whose names are defined at a later date.
 An alias name can be given to all elements of an IODDT structure.

Hardware Dependent Device Derived Data Types (Device DDT)
Device derived data type (DDT) is a predefined DDT that describes the I/O language elements of
an I/O Module. This data type is represented in a structure, which depends on the capabilities of
the I/O module.
This structure provides bits and register views when both extracted bits and register exist in
IODDT. In this case extracted bit is not seen as a child element of the register variable but directly
as field of Device DDT structure.
When adding a Modicon M340 module in a M340 remote I/O drop the Control Expert software will
create automatically the associated Device DDT instance. This instance is deduced from IODDT
(other not mapped object like %KW are not accessible).

Each I/O Module is associated with one implicit device DDT instance:
 Implicit Device DDT instances are created by default on device insertion and refreshed

automatically by the PLC. They contain the modules status, modules and channels health bits,
values of the modules inputs, values of the modules outputs, etc.
46 35006144 10/2019

Presentation
The Implicit Device DDT can be:
 linked to a device (Managed)
 not linked to a device (Un-managed)
NOTE: IODDT and topologic address (see Modicon M340, CANopen, User Manual) are no longer
supported with the Modicon M340 remote I/O modules. All the informations (bits and registers)
related to a channel are accessible directly as a field of device DDT structure.
NOTE: Optional Explicit structures are DDT Explicit DDT, created on demand from data editor and
used through Function block to be refreshed.
NOTE: Optional Explicit DDT types are proposed in the data editor to support Status or Command
data used by explicit exchanges on a Channel of an IO Modules in a M340 remote I/O drop. Explicit
DDT instances are created manually by the user in the data editor and used as Input or Output
Parameter with the Function block managing the explicit exchange (READ_STS_QX
(see EcoStruxure™ Control Expert, I/O Management, Block Library),
WRITE_CMD_QX (see EcoStruxure™ Control Expert, I/O Management, Block
Library)).

Derived Data Types (DDT)
The DDT types tab is used for defining derived data types (DDTs).
A derived data type is the definition of a structure or array from any data type already defined
(elementary or derived).
Tab DDT types:
35006144 10/2019 47

Presentation
The following functions are available:
 Definition of nested DDTs (max. 15 levels)
 Definition of arrays with up to 6 dimensions
 Assignment of an initial value
 Assignment of an address
 Entering a comment
 Analysis of derived data types
 Assignment of derived data types to a library
 View all properties of a derived data type in a separate properties dialog box
 An alias name can be given to all elements of a DDT structure or an array.

Function Blocks
The Function blocks tab is used for the instance declaration of elements and derived function
blocks (EFBs/DFBs).
Tab Function blocks:

The following functions are available:
 Display of the function blocks used in the project
 Definition of a symbol for the function blocks used in the project
 Automatic enabling of the defined symbols in the project
 Enter a comment about the function block
 View all parameters (inputs/outputs) of the function block
 Assignment of an initial value to the function block inputs/outputs
48 35006144 10/2019

Presentation
DFB Types
The DFB types tab is used for the defining derived function block (DFBs) parameters.
The creation of DFB logic is carried out directly in one or more sections of the FBD, LD, IL or ST
programming languages.
Tab DFB types:

The following functions are available:
 Definition of the DFB name
 Definition of all parameter of the DFB, such as:
 Inputs
 Outputs
 VAR_IN_OUT (combined inputs/outputs)
 Private variables
 Public variables

 Assignment of data types to DFB parameters
 Own selection dialog box for derived data types
 Assignment of an initial value
 Nesting DFBs
 Use of several sections in a DFB
 Enter a comment for DFBs and DFB parameters
 Analyze the defined DFBs
 Version management
 Assignment of defined DFBs to a library
35006144 10/2019 49

Presentation
Data Usage
Data types and instances created using the data editor can be inserted (context dependent) in the
programming editors.
The following functions are available:
 Access to all programming language editors
 Only compatible data is displayed
 View of the data according to their scope affiliation
 View of the functions, function blocks, procedures and derived data types arranged according

to their library affiliation
 Instance declaration during programming is possible
Data selection dialog box:
50 35006144 10/2019

Presentation
Online Modifications
It is possible to modify the type of a variable or a Function Block (FB) instance declared in
application or in a Derived Function Block (DFB) directly in online mode (see EcoStruxure™
Control Expert, Operating Modes). That means it is not required to stop the application to perform
such a type modification.
These operations can be done either in the data editor or in the properties editor, in the same way
as in offline mode.
When changing the type of a variable, the new value of the variable to be modified depends on its
kind:
 In the case of an unlocated variable, the variable is set to the initial value, if one exists.

Otherwise, it is set to the default value.
 In the case of a located variable, the variable restarts with the initial value if one exists.

Otherwise, the current binary value is unchanged.

NOTE: It is not possible to modify the type of a variable declared in Derived Data Type (DDT) in
online mode (see EcoStruxure™ Control Expert, Operating Modes). The application has to be
switched into offline mode (see EcoStruxure™ Control Expert, Operating Modes) in order to build
such a modification.

CAUTION
UNEXPECTED APPLICATION BEHAVIOR
Before applying the variable type change, check the impact of the new value of the variable on
the application execution.
Failure to follow these instructions can result in injury or equipment damage.
35006144 10/2019 51

Presentation
Restrictions About Online Modifications
In the following cases, the online type modification of a variable or of a Function Block (FB) is not
allowed:
 If the variable is used as network global data, the online type modification is not permitted.
 Whether the current FB can not be removed online, or a new FB can not be added online, the

online type modification of this FB is not allowed. Indeed, some Elementary Function Blocks
(EFB) like the Standard Function Blocks (SFB) do not allow to be added or removed online. As
a result, changing the type of an EFB instance to a SFB instance is not possible, and conversely.

In both of these cases, the following dialog box is displayed:

NOTE: Due to these limitations, if a Derived Function Block (DFB) contains at least one instance
of a SFB, it is not be possible to add or remove instance of this DFB in online mode
(see EcoStruxure™ Control Expert, Operating Modes).
52 35006144 10/2019

Presentation
Program Unit Data Editor

Introduction
NOTE: The Program Unit data editor is a data editor limited to the scope of the Program Unit to
which it belongs.
The Program Unit data editor offers the following features:
 Declaration of variables associated to the Program Unit
 Instance declaration of elementary and derived function blocks (EFBs/DFBs) used in the

Program Unit
 Management of the Program Unit parameters
The following functions are available in all tabs of the data editor:
 Copy, Cut, Paste with the following restrictions:
 Edit → Cut menu command is greyed in every tabs.
 Right-click Cut on a variable is greyed in every tabs
 Edit → Copy and Edit → Paste menu commands are not greyed but are not working in

Interface tab.
 Right-click Copy and right-click Paste on a variable are greyed in Interface, and Function

Blocks tabs.
 Expand/collapse structured data
 Sorting according to Symbol, Type, etc.
 Filter
 Inserting, deleting and changing the position of columns
 Drag and drop between the Program Unit data editor and the program editors
 Undo the last change
 Export/Import
Variables associated to a Program Unit can be:
 Private: can only be R/W in the scope of this Program Unit.
 Public: can be R/W out of the scope of this Program Unit.
 Parameters (inputs, outputs, inputs/outputs): linked to Public variables (from an other Program

Unit), or Global variables.
35006144 10/2019 53

Presentation
Interface Tab

The Interface tab is used to manage:
 input, output and input/output parameters.
 public variables
 external variables
The following functions are available:
 Assigning of an effective parameter (can be a Global variable or a Public variable from another

Program Unit) to input, output and input/output parameters.
 Assigning of an initial value
 Defining a symbol for parameters and variables
 Assigning data types
 Displaying all properties of a variable in a separate properties dialog box
 Entering a comment
54 35006144 10/2019

Presentation
Variables
The Variables tab is used for declaring variables used by the Program Unit:

The following functions are available:
 Defining a symbol for variables
 Assigning data types
 Assigning variables to Program Unit parameters (Effective Parameter)
 Declaring the Nature of the variables.
 Own selection dialog box for data types
 Assignment of an initial value
 Entering a comment
 Displaying all properties of a variable in a separate properties dialog box

Function Blocks
The Function blocks tab is used for the instance declaration of elements and derived function
blocks (EFBs/DFBs).
Tab Function blocks:
35006144 10/2019 55

Presentation
The following functions are available:
 Displaying the function blocks used in the Program Unit
 Defining symbol for the function blocks used in the Program Unit
 Automatic enabling of the defined symbols in the Program Unit
 Entering a comment for the function block
 Displaying all parameters (inputs/outputs) of the function block
 Assigning of initial values to the function block inputs/outputs

Program Unit Data Usage
Variables and instances created using the program data editor can be inserted (context
dependent) in the programming editors using the Instance Selection dialog box.
NOTE: Variables and instances can also be created on the fly in the different language editors.

Online Modifications
It is possible to modify the type of a variable or a Function Block (FB) instance declared in
application or in a Derived Function Block (DFB) directly in online mode (see EcoStruxure™
Control Expert, Operating Modes). That means it is not required to stop the application to perform
such a type modification.
These operations can be done either in the data editor or in the properties editor, in the same way
as in offline mode.
When changing the type of a variable, the new value of the variable to be modified depends on its
kind:
 In the case of an unlocated variable, the variable is set to the initial value, if one exists.

Otherwise, it is set to the default value.
 In the case of a located variable, the variable restarts with the initial value if one exists.

Otherwise, the current binary value is unchanged.

NOTE: When a reference (REF_TO) is used as Effective Parameter, if the effective parameter is
deleted then the REF_TO value in Program Unit is updated to its initial value after controller INIT.

CAUTION
UNEXPECTED APPLICATION BEHAVIOR
Before applying the variable type change, check the impact of the new value of the variable on
the application execution.
Failure to follow these instructions can result in injury or equipment damage.
56 35006144 10/2019

Presentation
Restrictions About Online Modifications
In the following cases, the online type modification of a variable or of a Function Block (FB) is not
allowed:
 If the variable is used as network global data, the online type modification is not permitted.
 Whether the current FB can not be removed online, or a new FB can not be added online, the

online type modification of this FB is not allowed. Indeed, some Elementary Function Blocks
(EFB) like the Standard Function Blocks (SFB) do not allow to be added or removed online. As
a result, changing the type of an EFB instance to a SFB instance is not possible, and conversely.

In both of these cases, the following dialog box is displayed:

NOTE: Due to these limitations, if a Derived Function Block (DFB) contains at least one instance
of a SFB, it is not be possible to add or remove instance of this DFB in online mode
(see EcoStruxure™ Control Expert, Operating Modes).
35006144 10/2019 57

Presentation
Program Editor

Introduction
A program can be built from:
 Tasks, that are executed cyclically or periodically.

Tasks are built from:
 Program Units (only for Modicon M580 and M340)
 Sections
 Subroutines

 Event processing, that is carried out before all other tasks.
Event processing is built from:
 Sections for processing time controlled events
 Sections for processing hardware controlled events

Example of a program:
58 35006144 10/2019

Presentation
Tasks
Control Expert supports multiple tasks (Multitasking).
The tasks are executed in parallel and independently of each other whereby the execution priorities
are controlled by the PLC. The tasks can be adjusted to meet various requirements and are
therefore a powerful instrument for structuring the project.
A multitask project can be constructed from:
 A Master task (MAST)

The Master task is executed cyclically or periodically.
It forms the main section of the program and is executed sequentially.

 A Fast task (FAST)
The Fast task is executed periodically. It has a higher priority than the Master task. The Fast
task is used for processes that are executed quickly and periodically.

 One to four AUX task(s))
The AUX tasks are executed periodically. They are used for slow processing and have the
lowest priority.

The project can also be constructed with a single task. In this case, only the Master task is active.

Event Processing
Event processing takes place in event sections. Event sections are executed with higher priority
than the sections of all other tasks. They are suited to processing that requires very short reaction
times after an event is triggered.
The following section types are available for event processing:
 Sections for processing time controlled events (Timerx Section)
 Sections for processing hardware controlled events (Evtx Section)
The following programming languages are supported:
 FBD (Function Block Diagram)
 LD (Ladder Diagram Language)
 IL (Instruction List)
 ST (Structured Text)
35006144 10/2019 59

Presentation
Program Units
Program Units are autonomous programs in which the logic of the project is created.
The Program Units are executed in the order shown in the project browser (structural view).
A Program Unit is connected to a task. The same Program Unit cannot belong to more than one
task at the same time.
The Program Unit includes:
 Public and local variables
 Sections

The following programming languages are supported:
 FBD (Function Block Diagram)
 LD (Ladder Diagram Language)
 SFC (Sequential Function Chart) only for sections in Program Unit which belongs to the

MAST task
 IL (Instruction List)
 ST (Structured Text)

 Animation tables

Sections
Sections are autonomous programs in which the logic of the project is created.
The sections are executed in the order shown in the project browser (structural view).
A section is connected to a task. The same section cannot belong to more than one task at the
same time.
The following programming languages are supported:
 FBD (Function Block Diagram)
 LD (Ladder Diagram Language)
 SFC (Sequential Function Chart) only for sections in MAST task
 IL (Instruction List)
 ST (Structured Text)
60 35006144 10/2019

Presentation
Subroutine
Subroutines are created as separate units in subroutine sections.
Subroutines are called from sections or from another subroutine.
Nesting of up to 8 levels is possible.
A subroutine cannot call itself (not recursive).
Subroutines are assigned a task. The same subroutine cannot be called by different tasks.
The following programming languages are supported:
 FBD (Function Block Diagram)
 LD (Ladder Diagram Language)
 IL (Instruction List)
 ST (Structured Text)
35006144 10/2019 61

Presentation
Function Block Diagram FBD

Introduction
The FBD editor is used for graphical function block programming according to IEC 61131-3.

Representation
Representation of an FBD section:

Objects
The objects of the FBD (Function Block Diagram) programming language help to divide a section
into a number of:
 Elementary Functions (EFs),
 Elementary Function Blocks (EFBs)
 Derived Function Blocks (DFBs)
 Procedures
 Subroutine calls
 Jumps
 Links
 Actual Parameters
 Text objects to comment on the logic
62 35006144 10/2019

Presentation
Properties
FBD sections have a grid behind them. A grid unit consists of 10 coordinates. A grid unit is the
smallest possible space between 2 objects in an FBD section.
The FBD programming language is not cell oriented but the objects are still aligned with the grid
coordinates.
An FBD section can be configured in number of cells (horizontal grid coordinates and vertical grid
coordinates).
The program can be entered using the mouse or the keyboard.

Input Aids
The FBD editor offers the following input aids:
 Toolbars for quick and easy access to the desired objects
 Syntax and semantics are checked as the program is being written.
 Incorrect functions and function blocks are displayed in blue
 Unknown words (e.g. undeclared variables) or unsuitable data types are marked with a red

wavy line
 Brief description of errors in the Quickinfo (Tooltip)

 Information for variables and pins can be displayed in a Quickinfo (Tooltip)
 type, name, address and comment of a variable/expression
 type, name and comment of an FFB pin

 Tabular display of FFBs
 Actual parameters can be entered and displayed as symbols or topological addresses
 Different zoom factors
 Tracking of links
 Optimization of link routes
 Display of inspection windows
35006144 10/2019 63

Presentation
Ladder Diagram (LD) Language

Introduction
The LD editor is used for graphical ladder diagram programming according to IEC 61131-3.

Representation
Representation of an LD section:

Objects
The objects of the LD programming language help to divide a section into a number of:
 Contacts,
 Coils,
 Elementary Functions (EFs)
 Elementary Function Blocks (EFBs),
 Derived Function Blocks (DFBs)
 Procedures
 Control elements
 Operation and compare blocks which represent an extension to IEC 61131-3
 Subroutine calls
 Jumps
 Links
 Actual Parameters
 Text objects to comment on the logic
64 35006144 10/2019

Presentation
Properties
LD sections have a background grid that divides the section into lines and columns.
The LD programming language is cell oriented, i.e. only one object can be placed in each cell.
LD sections can be 11-63 columns and 17-3998 lines in size.
The program can be entered using the mouse or the keyboard.

Input Aids
The LD editor offers the following input aids:
 Objects can be selected from the toolbar, the menu or directly using shortcut keys
 Syntax and semantics are checked as the program is being written.
 Incorrect objects are displayed in blue
 Unknown words (e.g. undeclared variables) or unsuitable data types are marked with a red

wavy line
 Brief description of errors in the Quickinfo (Tooltip)

 Information for variables and for elements of an LD section, that can be connected to a variable
(pins, contacts, coils, operation and compare blocks), can be displayed in a Quickinfo (Tooltip)
 type, name, address and comment of a variable/expression
 type, name and comment of FFB pins, contacts etc.

 Tabular display of FFBs
 Actual parameters can be entered and displayed as symbols or topological addresses
 Different zoom factors
 Tracking of FFB links
 Optimizing the link routes of FFB links
 Display of inspection windows
35006144 10/2019 65

Presentation
General Information about SFC Sequence Language

Introduction
The sequence language SFC (Sequential Function Chart), which conforms to IEC 61131-3, is
described in this section.
IEC conformity restrictions can be lifted through explicit enable procedures. Features such as multi
token, multiple initial steps, jumps to and from parallel strings etc. are then possible.

Representation
Representation of an SFC section:
66 35006144 10/2019

Presentation
Objects
An SFC section provides the following objects for creating a program:
 Steps
 Macro steps (embedded sub-step sequences)
 Transitions (transition conditions)
 Transition sections
 Action sections
 Jumps
 Links
 Alternative sequences
 Parallel sequences
 Text objects to comment on the logic

Properties
The SFC editor has a background grid that divides the section into 200 rows and 64 columns.
The program can be entered using the mouse or the keyboard.

Input Aids
The SFC editor offers the following input aids:
 Toolbars for quick and easy access to the desired objects
 Automatic step numbering
 Direct access to actions and transition conditions
 Syntax and semantics are checked as the program is being written.
 Incorrect objects are displayed in blue
 Unknown words (e.g. undeclared variables) or unsuitable data types are marked with a red

wavy line
 Brief description of errors in the Quickinfo (Tooltip)

 Information for variables and for transitions can be displayed in a Quickinfo (Tooltip)
 type, name, address and comment of a variable/expression
 type, name and comment of transitions

 Different zoom factors
 Show/hide the allocated actions
 Tracking of links
 Optimization of link routes
35006144 10/2019 67

Presentation
Step Properties
Step properties:

The step properties are defined using a dialog box that offers the following features:
 Definition of initial steps
 Definition of diagnostics times
 Step comments
 Allocation of actions and their qualifiers
68 35006144 10/2019

Presentation
Instruction List IL

Introduction
The IL editor is used for instruction list programming according to IEC 61131-3.

Representation
Representation of an IL section:

Objects
An instruction list is composed of a series of instructions.
Each instruction begins on a new line and consists of:
 An operator
 A modifier if required
 One or more operands if required
 A label as a jump target if required
 A comment about the logic if required.

Input Aids
The IL editor offers the following input aids:
 Syntax and semantics are checked as the program is being written.
 Keywords and comments are displayed in color
 Unknown words (e.g. undeclared variables) or unsuitable data types are marked with a red

wavy line
 Brief description of errors in the Quickinfo (Tooltip)

 Tabular display of the functions and function blocks
 Input assistance for functions and function blocks
 Operands can be entered and displayed as symbols or topological addresses
 Display of inspection windows
35006144 10/2019 69

Presentation
Structured Text ST

Introduction
The ST editor is used for programming in structured text according to IEC 61131-3.

Representation
Representation of an ST section:

Objects
The ST programming language works with "Expressions".
Expressions are constructions consisting of operators and operands that return a value when
executed.
Operators are symbols representing the operations to be executed.
Operators are used for operands. Operands are variables, literals, function and function block
inputs/outputs etc.
Instructions are used to structure and control the expressions.
70 35006144 10/2019

Presentation
Input Aids
The ST editor offers the following input aids:
 Syntax and semantics are checked as the program is being written.
 Keywords and comments are displayed in color
 Unknown words (e.g. undeclared variables) or unsuitable data types are marked with a red

wavy line
 Brief description of errors in the Quickinfo (Tooltip)

 Tabular display of the functions and function blocks
 Input assistance for functions and function blocks
 Operands can be entered and displayed as symbols or topological addresses
 Display of inspection windows
35006144 10/2019 71

Presentation
PLC Simulator

Introduction
The PLC simulator enables error searches to be carried out in the project without being connected
to a real PLC.
All project tasks (Mast, Fast, AUX and Event) that run on a real PLC are also available in the
Simulator. The difference from a real PLC is the lack of I/O modules and communication networks
(such as e.g. ETHWAY, Fipio and Modbus Plus) non-deterministic realtime behavior.
Naturally, all debugging functions, animation functions, breakpoints, forcing variables etc. are
available with the PLC simulator.

Representation
Representation of a dialog box:

Structure of the Simulator
The simulator controller offers the following views:
 Type of simulated PLC
 Current status of the simulated PLC
 Name of the loaded project
 IP address and DNS name of the host PC for the simulator and all connected Client PCs
 Dialog box for simulating I/O events
 Reset button to reset the simulated PLC (simulated cold restart)
 Power Off/On button (to simulate a warm restart)
 Shortcut menu (right mouse button) for controlling the Simulator
72 35006144 10/2019

Presentation
Export/Import

Introduction
The export and import functions allow you to use existing data in a new project. The XML
export/import format makes is possible to provide or accept data from external software.

Export
The following objects can be exported:
 Complete projects, including configuration
 Program Units
 Sections of all programming languages
 Subroutine sections of all programming languages
 Derived function blocks (DFBs)
 Derived data types (DDTs)
 Device derived data types (Device DDTs)
 Variable declarations
 Operator Screen

Import
All objects that can be exported can naturally be imported as well.
There are two types of import:
 Direct import

Imports the object exactly as it was exported.
 Import with the assistant

The assistant allows you to change the variables names, sections or functional modules. The
mapping of addresses can also be modified.
35006144 10/2019 73

Presentation
User Documentation

User Documentation
Scope of the user documentation:

The following are just some of the services provided for documenting the project:
 Print the entire project (2) or in sections (3)
 Selection between structural and functional view (1)
 Adjustment of the result (footer, general information, etc.)
 Local printing for programming language editors, configurator, etc.
 Special indication (bold) for keywords
 Paper format can be selected
 Print preview (4)
 Documentation save
74 35006144 10/2019

Presentation
Debug Services

Searching for Errors in the User Application
The following are just some of the features provided to optimize debugging in the project:
 Set breakpoints in the programming language editors
 Step by step program execution, including step into, step out and step over
 Call memory for recalling the entire program path
 Control inputs and outputs

Online Mode
Online mode is when a connection is established between the PC and the PLC.
Online mode is used on the PLC for debugging, for animation and for changing the program.
A comparison between the project of the PC and project of the PLC takes place automatically when
the connection is established.
This comparison can produce the following results:
 Different projects on the PC and the PLC

In this case, online mode is restricted. Only PLC control commands (e.g. start, stop), diagnostic
services and variable monitoring are possible. Changes cannot be made to the PLC program
logic or configuration. However, the downloading and uploading functions are possible and run
in an unrestricted mode (same project on PC and PLC).

 Same projects on the PC and the PLC
There are two different possibilities:
 ONLINE SAME, BUILT

The last project generation on the PC was downloaded to the PLC and no changes were
made afterwards, i.e. the projects on the PC and the PLC are absolutely identical.
In this case, all animation functions are available and unrestricted.

 ONLINE EQUAL, NOT BUILT
The last project generation on the PC was downloaded to the PLC, however changes were
made afterwards.
In this case, the animation functions are only available in the unchanged project components.
35006144 10/2019 75

Presentation
Animation
Different possibilities are provided for the animation of variables:
 Section animation

All programming languages (FBD, LD, SFC, IL and ST) can be animated.
The variables and connections are animated directly in the section.
76 35006144 10/2019

Presentation
 Tooltips
A tooltip with the value of a variable is displayed when the mouse pointer passes over that
variable.

 Inspection window
An inspection window can be created for any variable. This window displays the value of the
variable, the address and any comments (if available). This function is available in all
programming languages.
35006144 10/2019 77

Presentation
 Variables window
This window displays all variables used in the current section.

 Animation table
The value of all variables in the project can be displayed, changed or forced in animation tables.
Values can be changed individually or simultaneously together.
78 35006144 10/2019

Presentation
Watch Point
Watch points allow you to view PLC data at the exact moment at which it is created (1) and not
only at the end of a cycle.
Animation tables can be synchronized with the watch point (2).
A counter (3) determines how often the watch point has been updated.
ST section with watch point:
35006144 10/2019 79

Presentation
Breakpoint
Breakpoints allow you to stop processing of the project at any point.
ST section with breakpoint:

Single Step Mode
Single step mode allows you to execute the program step by step. Single step functions are
provided if the project was stopped by reaching a breakpoint or if it is already in single step mode.
ST section in single step mode:
80 35006144 10/2019

Presentation
The following functions are provided in single step mode:
 Step by step execution of the program
 StepIn (1)
 StepOut
 StepOver
 Show Current Step (2)
 Call memory (3)

When the "step into" function is executed several times, the call memory enables the display of
the entire path, starting with the first breakpoint

NOTE: Running the PLC program in step by step mode, as well as entering (StepIn) in a read/write
protected section may lead to the inability to read the program and exit from the section. The user
must switch the PLC in "Stop" mode to get back to the initial state.

Bookmarks
Bookmarks allow you to select code sections and easily find them again.
35006144 10/2019 81

Presentation
Diagnostic Viewer

Description
Control Expert provides system and project diagnostics.
Errors which occur are displayed in a diagnostics window. The section which caused the error can
be opened directly from the diagnostics window in order to correct the error.
82 35006144 10/2019

Presentation
Operator Screen

Introduction
Operator windows visualize the automation process.
The operator screen editor makes it easy to create, change and manage operator screens.
Operator screens are created and accessed via the project browser.
35006144 10/2019 83

Presentation
Operator Screen Editor
An operator window contains much information (dynamic variables, overviews, written text, etc.)
and makes it easy to monitor and change automation variables.
Operator Screen

The operator screen editor offers the following features:
 Extensive visualization functions
 Geometric elements

Line, rectangle, ellipse, curve, polygon, bitmap, text
 Control elements

Buttons, control box, shifter, screen navigation, hyperlinks, input field, rotating field
 Animation elements

Bar chart, trend diagram, dialog, date, disappear, blinking colors, variable animation
 Create a library for managing graphical objects
 Copying objects
 Creating a list of all variables used in the operator screen
 Creating messages to be used in the operator screen
 Direct access from the operator screen to the animation table or the cross reference table for

one or more variables
 Tooltips give additional information about the variables
 Managing operator screens in families
 Import/export of individual operator screens or entire families
84 35006144 10/2019

EcoStruxure™ Control Expert
Application Structure
35006144 10/2019
Application Structure

Part II
Application Structure

In This Part
This part describes the application program and memory structures associated with each type of
PLC.

What Is in This Part?
This part contains the following chapters:

Chapter Chapter Name Page
2 Description of the Available Functions for Each Type of PLC 87
3 Application Program Structure 91
4 Application Memory Structure 133
5 Operating Modes 151
35006144 10/2019 85

Application Structure
86 35006144 10/2019

EcoStruxure™ Control Expert
PLC Functions
35006144 10/2019
Description of the Available Functions for Each Type of PLC

Chapter 2
Description of the Available Functions for Each Type of PLC

Functions Available for the Different Types of PLC

Programming Languages
The following languages are available for platforms Modicon M580, Modicon M340, Momentum,
Premium, Atrium, and Quantum:
 LD
 FBD
 ST
 IL
 SFC
NOTE: Only LD and FBD languages are available on Modicon M580 Safety and
Modicon Quantum Safety CPUs.

Tasks and Processes
The following tables describe the available tasks and processes for Premium and Atrium:

Tasks
Processes

Premium: TSX Processors Atrium: TSX
Processors

P57 0244
P57 1••

P57 2••
P57 3••
P57 4••
H57 24M
H57 44M

P57 5••
P57 6634

PCI 57 204
PCI 57 354

Master task
cyclic or periodic

X X X X

Fast task
periodic

X X X X

Auxiliary tasks
periodic

- - 4 -

Program Unit - - - -
X or Value Available tasks or processes (Value is the maximum number).
- Unavailable tasks or processes.
(1) Depends on the available processor memory.
35006144 10/2019 87

PLC Functions
The following tables describe the available tasks and processes for Quantum:

Maximum size of a section 64 Kb 64 Kb
I/O type event processing 32 64 128 64
Timer type event processing - - 32 -
Total of I/O type and Timer
type event processing

32 64 128 64

Tasks
Processes

Quantum: 140 CPU Processors
31• •••
43• •••
53• •••

651••
652 60
670 60
671 60
672 60
672 61

651 60S
671 60S

Master task
cyclic or periodic

X X X

Fast task
periodic

X X -

Auxiliary tasks
periodic

- 4 -

Program Unit - - -
Maximum size of a section 64 Kb (1) -

I/O type event processing 64 128 -
Timer type event processing 16 32 -
Total of I/O type and Timer
type event processing

64 128 -

X or Value Available tasks or processes (Value is the maximum number).
- Unavailable tasks or processes.
(1) Depends on the available processor memory.

Tasks
Processes

Premium: TSX Processors Atrium: TSX
Processors

P57 0244
P57 1••

P57 2••
P57 3••
P57 4••
H57 24M
H57 44M

P57 5••
P57 6634

PCI 57 204
PCI 57 354

X or Value Available tasks or processes (Value is the maximum number).
- Unavailable tasks or processes.
(1) Depends on the available processor memory.
88 35006144 10/2019

PLC Functions
The following tables describe the available tasks and processes for M340:

The following tables describe the available tasks and processes for M580:

Tasks
Processes

Modicon M340 Processors
P34 1000 P34 20••

Master task
cyclic or periodic

X X

Fast task
periodic

X X

Auxiliary tasks
periodic

- -

Program Unit X X
Maximum size of a section (1)

I/O type event processing 32 64
Timer type event processing 16 32
Total of I/O type and Timer
type event processing

32 64

X or Value Available tasks or processes (Value is the maximum number).
- Unavailable tasks or processes.
(1) Depends on the available processor memory.

Tasks
Processes

Modicon M580 BME Processors
P58 1020
P58 20•0

P58 30•0
P58 40•0
P58 5040
P58 6040

H58 2040
H58 4040
H58 6040

P58 2040S
P58 4040S

H58 2040S
H58 4040S
H58 6040S

Master task
cyclic or periodic

X X X X (2) X (2)

Fast task
periodic

X X X X X

Auxiliary tasks
periodic

2 2 - 2 -

Program Unit X X X X X
Maximum size of a section (1) (1) (1) (1) (1)

I/O type event processing 64 128 - 128 -
X or Value Available tasks or processes (Value is the maximum number).
- Unavailable tasks or processes.
(1) Depends on the available processor memory.
(2) + a dedicated SAFE task.
35006144 10/2019 89

PLC Functions
The following tables describe the available tasks and processes for Momentum:

Timer type event processing 32 32 - 32 -
Total of I/O type and Timer
type event processing

64 128 - 128 -

Tasks
Processes

Momentum Processors
171 CBU 78090
171 CBU 9809•

Master task
cyclic or periodic

X

Fast task
periodic

-

Auxiliary tasks
periodic

-

Program Unit -
Maximum size of a section (1)

I/O type event processing -
Timer type event processing -
Total of I/O type and Timer type event processing -
X or Value Available tasks or processes (Value is the maximum number).
- Unavailable tasks or processes.
(1) Depends on the available processor memory.
(2) + a dedicated SAFE task.

Tasks
Processes

Modicon M580 BME Processors
P58 1020
P58 20•0

P58 30•0
P58 40•0
P58 5040
P58 6040

H58 2040
H58 4040
H58 6040

P58 2040S
P58 4040S

H58 2040S
H58 4040S
H58 6040S

X or Value Available tasks or processes (Value is the maximum number).
- Unavailable tasks or processes.
(1) Depends on the available processor memory.
(2) + a dedicated SAFE task.
90 35006144 10/2019

EcoStruxure™ Control Expert
Program Structure
35006144 10/2019
Application Program Structure

Chapter 3
Application Program Structure

Subject of this Chapter
This chapter describes the structure and execution of the programs created using the
Control Expert software.

What Is in This Chapter?
This chapter contains the following sections:

Section Topic Page
3.1 Description of Tasks and Processes 92
3.2 Description of Program Units 98
3.3 Description of Sections and Subroutines 100
3.4 Mono Task Execution 106
3.5 Multitasking Execution 114
35006144 10/2019 91

Program Structure
Description of Tasks and Processes

Section 3.1
Description of Tasks and Processes

Subject of this Section
This section describes the tasks and processes that comprise the application program.

What Is in This Section?
This section contains the following topics:

Topic Page
Presentation of the Master Task 93
Presentation of the Fast Task 94
Presentation of Auxiliary Tasks 95
Overview of Event Processing 97
92 35006144 10/2019

Program Structure
Presentation of the Master Task

General
The master task represents the main task of the application program. It is obligatory and created
by default.

Structure
The master task (MAST) is made up of Program Units and/or sections and subroutines.
NOTE: Program Units are only available for Modicon M580 and M340.
Each section of the master task is programmed in the following languages: LD, FBD, IL, ST or SFC.
The subroutines are programmed in LD, FBD, IL, or ST and are called in the task sections.
NOTE: SFC can be used only in the master task sections. The number of sections programmed in
SFC is unlimited.

Execution
You can choose the type of master task execution:
 cyclic (default selection)
 or periodic (1 to 255 ms)

Control
The master task can be controlled by program, by bits and system words.

System objects Description
%SW0 Task period.
%S30 Master task activation.
%S11 Watchdog error.
%S19 Period overrun.
%SW27 Number of ms spent in the system during the last Mast cycle.
%SW28 Maximum overhead time (in ms).
%SW29 Minimum overhead time (in ms).
%SW30 Execution time (in ms) of the last cycle.
%SW31 Execution time (in ms) of the longest cycle.
%SW32 Execution time (in ms) of the shortest cycle.
35006144 10/2019 93

Program Structure
Presentation of the Fast Task

General
The fast task is intended for short duration and periodic processing tasks.

Structure
The fast task (FAST) is made up of Program Units and/or sections and subroutines.
NOTE: Program Units are only available for Modicon M580 and M340.
Each section of the fast task is programmed in one of the following languages: LD, FBD, IL or ST.
SFC language cannot be used in the sections of a fast task.
Subroutines are programmed in LD, FBD, IL, or ST language and are called in the task sections.

Execution
The execution of the fast task is periodic.
It is higher priority than the master task.
The period of the fast task (FAST) is fixed by configuration, from 1 to 255 ms.
The executed program must however remain short to avoid the overflow of lower-priority tasks.

Control
The fast task can be controlled by program by bits and system words.

System objects Description
%SW1 Task period.
%S31 Fast task activation.
%S11 Watchdog error
%S19 Period overrun.
%SW33 Execution time (in ms) of the last cycle.
%SW34 Execution time (in ms) of the longest cycle.
%SW35 Execution time (in ms) of the shortest cycle.
94 35006144 10/2019

Program Structure
Presentation of Auxiliary Tasks

General
The auxiliary tasks are intended for slower processing tasks. These are the least priority tasks.
It is possible to program up to four auxiliary tasks (AUX0, AUX1, AUX2 or AUX3) on the Premium
TSX P57 5•• and Quantum 140 CPU 6•••• PLCs.
It is possible to program up to two auxiliary tasks (AUX0, AUX1) on the Modicon M580
BME P58 •••• PLCs.
Auxiliary tasks are not available for Modicon M340 PLCs.

Structure
The auxiliary tasks (AUX) are made up of Program Units and/or sections and subroutines.
NOTE: Program Units are only available for Modicon M580 and M340.
Each section of the auxiliary task is programmed in one of the following languages: LD, FBD, IL or
ST.
The SFC language is not usable in the sections of an auxiliary task.
A maximum of 64 subroutines can be programmed in the LD, FBD, IL or ST language. These are
called in the task sections.

Execution
The execution of auxiliary tasks is periodic.
They are the least priority.
The auxiliary task period can be fixed from 10 ms to 2550 ms.
35006144 10/2019 95

Program Structure
Control
The auxiliary tasks can be controlled by program by system bits and words:

System objects Description
%SW2 Period of auxiliary task 0
%SW3 Period of auxiliary task 1
%SW4 Period of auxiliary task 2
%SW5 Period of auxiliary task 3
%S32 Activation of auxiliary task 0
%S33 Activation of auxiliary task 1
%S34 Activation of auxiliary task 2
%S35 Activation of auxiliary task 3
%S11 Watchdog error
%S19 Period overrun.
%SW36 Execution time (in ms) of the last cycle of auxiliary task 0
%SW39 Execution time (in ms) of the last cycle of auxiliary task 1
%SW42 Execution time (in ms) of the last cycle of auxiliary task 2
%SW45 Execution time (in ms) of the last cycle of auxiliary task 3
%SW37 Execution time (in ms) of the longest cycle of auxiliary task 0
%SW40 Execution time (in ms) of the longest cycle of auxiliary task 1
%SW43 Execution time (in ms) of the longest cycle of auxiliary task 2
%SW46 Execution time (in ms) of the longest cycle of auxiliary task 3
%SW38 Execution time (in ms) of the shortest cycle of auxiliary task 0
%SW41 Execution time (in ms) of the shortest cycle of auxiliary task 1
%SW44 Execution time (in ms) of the shortest cycle of auxiliary task 2
%SW47 Execution time (in ms) of the shortest cycle of auxiliary task 3
96 35006144 10/2019

Program Structure
Overview of Event Processing

General
Event processing is used to reduce the response time of the application program to events:
 coming from input/output modules,
 from event timers.
These processing tasks are performed with priority over all other tasks. They are therefore suited
to processing tasks requiring a very short response time in relation to the event.
The number of event processing tasks (see page 87) that can be programmed depends on the
type of processor.

Structure
An event processing task is monosectional, and made up of a single (unconditioned) section.
It is programmed in either LD, FBD, IL or ST language.
Two types of event are offered:
 I/O event: for events coming from input/output modules
 TIMER event: for events coming from event timers.

Execution
The execution of an event processing task is asynchronous.
The occurrence of an event reroutes the application program to the processing task associated
with the input/output channel or event timer which caused the event.

Control
The following system bits and words can be used to control event processing tasks during the
execution of the program.

System objects Description
%S38 Activation of event processing.
%S39 Saturation of the event call management stack.
%SW48 Number of IO events and telegram processing tasks executed.

NOTE: TELEGRAM is available only for PREMIUM.

 %SW75 Number of timer type events in the queue.
35006144 10/2019 97

Program Structure
Description of Program Units

Section 3.2
Description of Program Units

Description of Program Units

Overview of the Program Unit
Program Units are autonomous programming entities (only available for Modicon M580 and
M340).
The Program Unit includes:
 Public and local variables
 Sections

The following programming languages are supported:
 FBD (Function Block Diagram)
 LD (Ladder Diagram Language)
 SFC (Sequential Function Chart) only for sections in Program Unit which belongs to the

MAST task
 IL (Instruction List)
 ST (Structured Text)

 Animation tables
The Program Units are linked to a task. The same Program Unit cannot belong simultaneously to
several tasks.
The sections and Program Units under a task are executed in the order of their programming in the
browser window (structure view).
The sections under a Program Unit are executed in the order of their programming in the browser
window (structure view).
The identification tags of the instruction lines, the contact networks, and so on, are specific to each
section of the Program Unit (no program jump to another section of the same Program Unit is
possible).
An execution condition can be associated with one or more Program Units and or sections of
Program Units.
98 35006144 10/2019

Program Structure
Example
The following diagram shows a task structured into Program Units and sections:

The execution order in this MAST task example, starts with ProgramUnit1, continues with
Section1 and ends with ProgramUnit2. Inside ProgramUnit2 the execution order is first
Section1_P2 then Section2_P1.

Characteristics of a Program Unit
The following table describes the characteristics of a Program Unit:

Characteristic Description
Name 32 characters maximum (accents are possible, but spaces are not allowed).
Section Language LD, FBD, IL, ST or SFC
Task or processing Master, fast, auxiliary
Condition
(optional)

A BOOL or EBOOL type bit variable can be used to condition the execution
of the Program Unit.

Comment 256 characters maximum
Protection Write-protection, read/write protection.
35006144 10/2019 99

Program Structure
Description of Sections and Subroutines

Section 3.3
Description of Sections and Subroutines

Aim of this Section
This section describes the sections and the subroutines that make up a task and a Program Unit.

What Is in This Section?
This section contains the following topics:

Topic Page
Description of Sections 101
Description of SFC sections 103
Description of Subroutines 105
100 35006144 10/2019

Program Structure
Description of Sections

Overview of the Sections
Sections are autonomous programming entities.
The identification tags of the instruction lines, the contact networks, etc. are specific to each section
(no program jump to another section is possible).
These are programmed either in:
 Ladder language (LD)
 Functional block language (FBD)
 Instruction List (IL)
 Structured Text (ST)
 or Sequential Function Charting (SFC)
on condition that the language is accepted in the task.
The sections are executed in the order of their programming in the browser window (structure
view).
An execution condition can be associated with one or more sections in the master, fast and
auxiliary tasks, but not in the event processing tasks.
The sections are linked to a task. The same section cannot belong simultaneously to several tasks.

Example
The following diagram shows a task structured into sections.
35006144 10/2019 101

Program Structure
Characteristics of a Section
The following table describes the characteristics of a section.

Characteristic Description
Name 32 characters maximum (accents are possible, but spaces are not allowed).
Language LD, FBD, IL, ST or SFC
Task or processing Master, fast, auxiliary, event
Condition
(optional)

A BOOL or EBOOL type bit variable can be used to condition the execution of the
section.

Comment 256 characters maximum
Protection Write-protection, read/write protection.
102 35006144 10/2019

Program Structure
Description of SFC sections

General
The sections in Sequential Function Chart language are made up of:
 a main chart programmed in SFC
 macro steps (MS) programmed in SFC
 actions and transitions programmed in LD, FBD, ST, or IL
The SFC sections are programmable only in the master task (see detailed description of SFC
sections)
35006144 10/2019 103

Program Structure
Example
The following diagram gives an example of the structure of an SFC section, and uses the chart to
show the macro step calls that are used.
104 35006144 10/2019

Program Structure
Description of Subroutines

Overview of Subroutines
Subroutines are programmed as separate entities, either in:
 Ladder language (LD),
 Functional block language (FBD),
 Instruction List (IL),
 Structured Text (ST).
The calls to subroutines are carried out in the sections or from another subroutine.
A subroutine cannot call itself (non-recursive).
Subroutines are also linked to a task. The same subroutine cannot be called from several different
tasks.

Example
The following diagram shows a task structured into sections and subroutines.

Characteristics of a Subroutine
The following table describes the characteristics of a subroutine.

Characteristic Description
Name 32 characters maximum (accents are possible, but spaces are not

allowed).
Language LD, FBD, IL, or ST.
Task MAST, FAST or Auxiliary
Comment 1024 characters maximum
35006144 10/2019 105

Program Structure
Mono Task Execution

Section 3.4
Mono Task Execution

Subject of this Section
This section describes how a mono task application operates.

What Is in This Section?
This section contains the following topics:

Topic Page
Description of the Master Task Cycle 107
Mono Task: Cyclic Execution 109
Periodic Execution 110
Control of Cycle Time 111
Execution of Quantum Sections with Remote Inputs/Outputs 112
106 35006144 10/2019

Program Structure
Description of the Master Task Cycle

General
The program for a mono task application is associated with a single user task, the master task
(see page 93).
You can choose the type of master task execution:
 cyclic
 periodic

Illustration
The following illustration shows the operating cycle.
35006144 10/2019 107

Program Structure
Description of the Different Phases
The table below describes the operating phases.

NOTE: During the input acquisition and output update phases, the system also implicitly monitors
the PLC (management of system bits and words, updating of current values of the real time clock,
updating of status LEDs and LCD screens (not for Modicon M340), detection of changes between
RUN/STOP, etc.) and the processing of requests from the terminal (modifications and animation).

Operating Mode
PLC in RUN, the processor carries out internal processing, input acquisition, processing of the
application program and the updating of outputs in that order.
PLC in STOP, the processor carries out:
 internal processing,
 input acquisition (1),
 and depending on the chosen configuration:
 fallback mode: the outputs are set to fallback position.
 maintain mode: the last value of the outputs is maintained.

(1) For Quantum PLCs, input acquisition is inhibited when the PLC is in STOP.
NOTE: For information about inhibiting and activating tasks using system bits refer to Task Control
(see page 121).

Phase Description
Acquisition of
inputs

Writing to memory of the status of the data on the inputs of the discrete and application-
specific modules associated with the task,
These values can be modified by forcing values.

Program
processing

Execution of application program, written by the user,

Updating of
outputs

Writing of output bits or words to the discrete or application-specific modules associated
with the task depending on the state defined by the application.

As for the inputs, the values written to the outputs can be modified by forcing values.
108 35006144 10/2019

Program Structure
Mono Task: Cyclic Execution

General
The master task operates as outlined below. A description is provided of cyclic execution of the
master task in mono task operation.

Operation
The following drawing shows the execution phases of the PLC cycle.

%I Reading of inputs
%Q Writing of outputs

Description
This type of operation consists of sequencing the task cycles, one after another.
After having updated the outputs, the system performs its own specific processing then starts
another task cycle, without pausing.

Cycle Check
The cycle is checked by the watchdog (see page 111).
35006144 10/2019 109

Program Structure
Periodic Execution

Description
In this operating mode, input acquisition, the processing of the application program and the
updating of outputs are all carried out periodically over a defined period of 1 to 255 ms.
At the start of the PLC cycle, a time out whose current value is initialized to the defined period starts
the countdown.
The PLC cycle must be completed before this time out expires and launches a new cycle.

Operation
The following diagram shows the execution phases of the PLC cycle.

%I Reading of inputs
%Q Writing of outputs

Operating Mode
The processor carries out internal processing, input acquisition, processing of the application
program and the updating of outputs in that order.
 If the period is not yet over, the processor completes its operating cycle until the end of the

period by performing internal processing.
 If the operating time is longer than that assigned to the period, the PLC signals a period overrun

by setting the system bit %S19 of the task to 1. Processing then continues and is executed fully
(however, it must not exceed the watchdog time limit). The following cycle is started after the
outputs have been implicitly written for the current cycle.

Cycle Check
Two checks are carried out:
 period overrun (see page 111),
 by watchdog (see page 111).
110 35006144 10/2019

Program Structure
Control of Cycle Time

General
The period of master task execution, in cyclic or periodic operation, is controlled by the PLC
(watchdog) and must not exceed the value defined in Tmax configuration (1500 ms by default, 1.5
s maximum).

Software Watchdog (Periodic or Cyclic Operation)
If watchdog overflow should occur, the application is declared in error, which causes the PLC to
stop immediately (HALT state).
The bit %S11 indicates a watchdog overflow. It is set to 1 by the system when the cycle time
becomes greater than the watchdog.
The word %SW11 contains the watchdog value in ms. This value is not modifiable by the program.
NOTE:
 The reactivation of the task requires the terminal to be connected in order to analyze the cause

of the error, correct it, reinitialize the PLC and switch it to RUN.
 It is not possible to exit HALT by switching to STOP. To do this you must reinitialize the

application to ensure consistency of data.

Control in Periodic Operation
In periodic operation, an additional control enables a period overrun to be detected. A period
overrun does not cause the PLC to stop if it remains less than the watchdog value.
The bit %S19 indicates a period overflow. It is set to 1 by the system, when the cycle time becomes
greater than the task period.
The word %SW0 contains the value of the period (in ms). It is initialized on cold restart by the
defined value. It can be changed by the user.

Exploitation of Master Task Execution Times
The following system words can be used to obtain information on the cycle time:
 %SW30 contains the execution time of the last cycle
 %SW31 contains the execution time of the longest cycle
 %SW32 contains the execution time of the shortest cycle
NOTE: These different items of information can also be accessed explicitly from the configuration
editor.
35006144 10/2019 111

Program Structure
Execution of Quantum Sections with Remote Inputs/Outputs

General
Quantum PLCs have a specific section management system. It applies to stations with remote
inputs/outputs.
These stations are used with following RIO modules:
 140 CRA 931 00
 140 CRA 932 00
This system allows remote inputs/outputs to be updated on sections with optimum response times
(without waiting for the entire task cycle before updating the inputs/outputs).

Operation
The following diagram shows the IO phases when 5 drops are associated to client task sections.

%Ii inputs of drop No. i
%Qi outputs of drop No. i
i drop number

Description

Phase Description
1 Request to update:

 the inputs of the first drop (i=1)
 the outputs of the last drop (i=5)

2 Processing the program
3  Updating the inputs of the first drop (i=1)

 Request to update the inputs of the second drop (i=2)

4 Request to update:
 the inputs of the third drop (i=3)
 the outputs of the first drop (i=1)

5 Request to update:
 the inputs of the fourth drop (i=4)
 the outputs of the second drop (i=2)
112 35006144 10/2019

Program Structure
Adjustment of the Drop Hold-Up Time Value
In order for the remote outputs to be correctly updated and avoid fallback values to be applied, the
drop hold-up time must be set to at least twice the mast task cycle time. Therefore the default value,
300 ms, must be changed if the MAST period is set to the maximum value, 255 ms. The adjustment
of the Drop Hold-Up time (see Quantum using EcoStruxure™ Control Expert, Hot Standby
System, User Manual) must be done on all configured drops.

6 Request to update:
 the inputs of the last drop (i=5)
 the outputs of the third drop (i=3)

7 Request to update the outputs of the fourth drop (i=4)

Phase Description
35006144 10/2019 113

Program Structure
Multitasking Execution

Section 3.5
Multitasking Execution

Subject of this Section
This section describes how a multitasking application operates.

What Is in This Section?
This section contains the following topics:

Topic Page
Multitasking Software Structure 115
Sequencing of Tasks in a Multitasking Structure 117
Task Control 119
Assignment of Input/Output Channels to Master, Fast and Auxiliary Tasks 122
Management of Event Processing 124
Execution of TIMER-type Event Processing 125
Input/Output Exchanges in Event Processing 130
How to Program Event Processing 131
114 35006144 10/2019

Program Structure
Multitasking Software Structure

Tasks and Processing
The task structure of this type of application is as follows:

Illustration
The following diagram shows the tasks in a multitasking structure and their level of priority.

Description
The master (MAST) task is still the application base. The other tasks differ depending on the type
of PLC (see page 87).
Levels of priority are fixed for each task in order to prioritize certain types of processing.
Event processing can be activated asynchronously with respect to periodic tasks by an order
generated by external events. It is processed as a priority and requires any processing in progress
to be stopped.

Task/Processing Designation Description
Master MAST Always present, may be cyclic or periodic.
Fast FAST Optional, always periodic.
Auxiliary AUX 0 to 3 Optional and always periodic.
Event EVTi and TIMERi

(see page 124)
Called by the system when an event occurs on an input/output module
or triggered by the event timer.
These types of processing are optional and can be used by
applications that need to act on inputs/outputs within a short response
time.
35006144 10/2019 115

Program Structure
Subroutine limitations
Subroutines can only be used in one task. For example, MAST subroutines cannot be called from
TIMER and EVENT tasks.

Precautions

NOTE:
During an update of %M linked to FAST task I/O, you must either:
 do them at the same time in the FAST task
 mask the FAST task (%S31) while updating

CAUTION
UNEXPECTED MULTITASK APPLICATION BEHAVIOR
The sharing of Inputs/Outputs between different tasks can lead to unforeseen behavior by the
application.
We specifically recommend you associate each output or each input to one task only.
Failure to follow these instructions can result in injury or equipment damage.
116 35006144 10/2019

Program Structure
Sequencing of Tasks in a Multitasking Structure

General
The master task is active by default.
The fast and auxiliary tasks are active by default if they have been programmed.
Event processing is activated when the associated event occurs.

Operation
The table below describes the execution of priority tasks (this operation is also illustrated in the
diagram below).

Description of the Task Sequence
The following diagram illustrates the task sequence of multitasking processing with a cyclic master
task, a fast task with a 20ms period and event processing.

Legend:
I: acquisition of inputs
P: program processing
O: updating of outputs

Phase Description
1 Occurrence of an event or start of the fast task cycle.
2 Execution of lower priority tasks in progress stopped,
3 Execution of the priority task.
4 The interrupted task takes over again when processing of the priority task is

complete.
35006144 10/2019 117

Program Structure
Task Control
The execution of fast and event processing tasks can be controlled by the program using the
following system bits:
 %S30 is used to control whether or not the MAST master task is active
 %S31 is used to control whether or not the FAST task is active..
 %S32 to %S35 are used to control whether or not the auxiliary tasks AUX0 to AUX3 are active.
 %S38 is used to control whether EVTi event processing is active.
NOTE: The elementary functions MASKEVT and UNMASKEVT also allow the global masking and
unmasking of events by the program.
118 35006144 10/2019

Program Structure
Task Control

Cyclic and Periodic Operation
In multitasking operation, the highest priority task shall be used in periodic mode in order to allow
enough time for lower priority tasks to be executed.
For this reason, only the task with the lowest priority should be used in cyclic mode. Thus, choosing
cyclic operating mode for the master task excludes using auxiliary tasks.

Measurement of Task Durations
The duration of tasks is continually measured. This measurement represents the duration between
the start and the end of execution of the task. This measurement includes the time taken up by
tasks of higher priority which may interrupt the execution of the task being measured.
The following system words (see EcoStruxure™ Control Expert, System Bits and Words,
Reference Manual) give the current, maximum and minimum cycle times for each task (value in
ms)

NOTE: The maximum and minimum times are taken from the times measured since the last cold
restart.

Task Periods
The task periods are defined in the task properties. They can be modified by the following system
words.

When the cycle time of the task exceeds the period, the system sets the system bit %S19 of the
task to 1 and continues with the following cycle.
NOTE: The values of the periods do not depend on the priority of tasks. It is possible to define the
period of a fast task which is larger than the master task.

Measurement of times MAST FAST AUX0 AUX1 AUX2 AUX3
Current %SW30 %SW33 %SW36 %SW39 %SW42 %SW45
Maximum %SW31 %SW34 %SW37 %SW40 %SW43 %SW46
Minimum %SW32 %SW35 %SW38 %SW41 %SW44 %SW47

System words Task Values Default values Observations
%SW0 MAST 0..255ms Cyclic 0 = cyclic operation
%SW1 FAST 1..255ms 5ms -
%SW2 AUX0 10ms..2.55s 100ms The values of the period are

expressed in 10ms.%SW3 AUX1 10ms..2.55s 200ms
%SW4 AUX2 10ms..2.55s 300ms
%SW5 AUX3 10ms..2.55s 400ms
35006144 10/2019 119

Program Structure
Watchdog
The execution of each task is controlled by a configurable watchdog by using the task properties.
The following table gives the range of watchdog values for each of the tasks:

If watchdog overflow should occur, the application is declared in error, which causes the PLC to
stop immediately (HALT state).
The word %SW11 contains the watchdog value of the master task in ms. This value is not
modifiable by the program.
The bit %S11 indicates a watchdog overflow. It is set to 1 by the system when the cycle time
becomes greater than the watchdog.
NOTE:
 The reactivation of the task requires the terminal to be connected in order to analyze the cause

of the error, correct it, reinitialize the PLC and switch it to RUN.
 It is not possible to exit HALT by switching to STOP. To do this you must reinitialize the

application to ensure consistency of data.

Tasks Watchdog values
(min...max) (ms)

Default watchdog
value (ms)

Associated system word

MAST 10..1500 250 %SW11
FAST 10..500 100 -
AUX0 100..5000 2000 -
AUX1 100..5000 2000 -
AUX2 100..5000 2000 -
AUX3 100..5000 2000 -
120 35006144 10/2019

Program Structure
Task Control
When the application program is being executed, it is possible to activate or inhibit a task by using
the following system bits:

The task is active when the associated system bit is set to 1. These bits are tested by the system
at the end of the master task.
When a task is inhibited, the inputs continue to be read and the outputs continue to be written.
On startup of the application program, for the first execution cycle only the master task is active.
At the end of the first cycle the other tasks are automatically activated except if one of the tasks in
inhibited (associated system bit set to 0) by the program.

Controls on Input Reading and Output Writing Phases
The bits of the following system words can be used (only when the PLC is in RUN) to inhibit the
input reading and output writing phases.

NOTE: By default, the input reading and output writing phases are active (bits of system words
%SW8 and %SW9 set to 0).
On Quantum, inputs/outputs which are distributed via DIO bus are not assigned by the words
%SW8 and %SW9.

System bits Task
%S30 MAST
%S31 FAST
%S32 AUX0
%S33 AUX1
%S34 AUX2
%S35 AUX3

Inhibition of
phases...

MAST FAST AUX0 AUX1 AUX2 AUX3

reading of
inputs

%SW8.0 %SW8.1 %SW8.2 %SW8.3 %SW8.4 %SW8.5

writing of
outputs

%SW9.0 %SW9.1 %SW9.2 %SW9.3 %SW9.4 %SW9.5
35006144 10/2019 121

Program Structure
Assignment of Input/Output Channels to Master, Fast and Auxiliary Tasks

General
Each task writes and reads the inputs/outputs assigned to it.
The association of a channel, group of channels or an input/output module with a task is defined
in the configuration screen of the corresponding module.
The task that is associated by default is the MAST task.

Reading of Inputs and Writing of Outputs on Premium
All the input/output channels of in-rack modules can be associated with a task (MAST, FAST or
AUX 0..3).
Local and remote inputs/outputs (X bus):
For each task cycle, the inputs are read at the start of the task and the outputs are written at the
end of the task.
Remote inputs/outputs on Fipio bus:
In controlled mode, the refreshing of inputs/outputs is correlated with the task period. The system
guarantees that inputs/outputs are updated in a single period. Only the inputs/outputs associated
with this task are refreshed.
In this mode, the period of the PLC task (MAST, FAST or AUX) must be greater than or equal to
the network cycle time.
In free mode, no restriction is imposed on the task period. The PLC task period (MAST, FAST or
AUX) can be less than the network cycle. If this is the case, the task can be executed without
updating the inputs/outputs. Selecting this mode gives you the possibility of having the lowest
possible task times for applications where speed is critical.

Example on Premium
With its 8 successive channel modularity (channels 0 to 7, channels 8 to 15, etc.), the
inputs/outputs of the Premium discrete modules can be assigned in groups of 8 channels,
independently of the MAST, AUXi or FAST task.
Example: it is possible to assign the channels of a 28 input/output module as follows:
 inputs 0 to 7 assigned to the MAST task,
 inputs 8 to 15 assigned to the FAST task,
 outputs 0 to 7 assigned to the MAST task,
 outputs 8 to 15 assigned to the AUX0 task.
122 35006144 10/2019

Program Structure
Reading of Inputs and Writing of Outputs on Quantum
Local inputs/outputs:
Each input/output module or group of modules can be associated with a single task (MAST, FAST
or AUX 0..3).
Remote inputs/outputs:
Remote input/output stations can only be associated with the master (MAST) task. The assignment
is made for sections (see page 112), with 1 remote input station and 1 remote output station per
section.
Distributed inputs/outputs:
Distributed input/output stations can only be associated with the master (MAST) task.
The inputs are read at the start of the master task and the outputs are written at the end of the
master task.

Reading of Inputs and Writing of Outputs on M580
Local inputs/outputs:
Each input/output module or group of modules can be associated with a single task (MAST, FAST,
AUX0 or AUX1).
Remote Inputs/Outputs:
The tasks available to be associated to remote inputs and outputs depend upon the adapter
module installed in the remote rack (see Modicon M580, RIO Modules, Installation and
Configuration Guide).
Distributed Inputs/Outputs: Distributed inputs and outputs can be associated only with the master
(MAST) task.
35006144 10/2019 123

Program Structure
Management of Event Processing

General
Event processing take priority over tasks.
The following illustration describes the 3 defined levels of priority:

Management of Priorities
 EVT0 event processing is the highest priority processing. It can itself interrupt other types of

event processing.
 EVTi event processing triggered by input/output modules (priority 1) take priority over TIMERi

event processing triggered by timers (priority 2).
 On Modicon M580, M340, Premium and Atrium PLCs: types of event processing with priority

level 1 are stored and processed in order.
 On Quantum PLC: the priority of priority 1 processing types is determined:
 by the position of the input/output module in the rack,
 by the position of the channel in the module.
The module with the lowest position number has the highest level of priority.

 Event processing triggered by timer is given priority level 2. The processing priority is
determined by the lowest timer number.

Control
The application program can globally validate or inhibit the various types of event processing by
using the system bit %S38. If one or more events occur while they are inhibited, the associated
processing is lost.
Two elementary functions of the language, MASKEVT() and UNMASKEVT(), used in the
application program can also be used to mask or unmask event processing.
If one or more events occur while they are masked, they are stored by the system and the
associated processing is carried out after unmasking.
124 35006144 10/2019

Program Structure
Execution of TIMER-type Event Processing

Description
TIMER-type event processing is any process triggered by the ITCNTRL (see EcoStruxure™
Control Expert, System, Block Library) function.
This timer function periodically activates event processing every time the preset value is reached.

Reference
The following parameters are selected in the event processing properties.

NOTE: The Phase must be lower than Preset in TIMER-type Event.

Parameter Value Default value Role
Time base 1 ms, 10ms,

100ms, 1 sec
10ms Timer time base. Note: the time base of 1ms should be

used with care, as there is a risk of overrun if the
processing triggering frequency is too high.

Preset 1..1023 10 Timer preset value. The time period obtained equals:
Preset x Time Base.

Phase 0..1023 0 The value of the temporal offset between the
STOP/RUN transition of the PLC and the first restart of
the timer from 0.
The temporal value equals:
Phase x Time Base.
35006144 10/2019 125

Program Structure
ITCNTRL Function
Representation in FBD:

The following table describes the input parameters:

The following table describes the output parameters:

Parameter Type Comment
Enable BOOL Enable input selected
Reset_Timer BOOL At 1 resets the timer
Hold_Timer BOOL At 1, freezes timer incrementation.
Nb_Task_Event BYTE Input byte which determines the event

processing number to be triggered.

Parameter Type Comment
Status_Timer WORD Status word.
Current_Value TIME Current value of timer.
126 35006144 10/2019

Program Structure
Timing Diagram for Normal Operation
Timing diagram.

Normal operation
The following table describes the triggering of TIMER-type event processing operations (see timing
diagram above).

Phase Description
1 When a rising edge is received on the RESET input, the timer is reset to 0.

2 The current value VALUE of the timer increases from 0 towards the preset value at a rate of one
unit for each pulse of the time base.

3 An event is generated when the current value has reached the preset value, the timer is reset
to 0, and then reactivated. The associated event processing is also triggered, if the event is not
masked. It can be deferred if an event processing task with a higher or identical priority is already
in progress.

4 When the ENABLE input is at 0, the events are no longer sent out. TIMER type event processing
is no longer triggered.

5 When the HOLD input is at 1, the timer is frozen, and the current value stops incrementing, until
this input returns to 0.
35006144 10/2019 127

Program Structure
Event Processing Synchronization
The Phase parameter is used to trigger different TIMER-type event processing tasks at constant
time intervals.
This parameter set a temporal offset value with an absolute time origin, which is the last passage
of the PLC from STOP to RUN.
Operating condition:
 The event processing tasks must have the same time base and preset values.
 The RESET and HOLD inputs must not be set to 1.

Example: Two event processing tasks Timer1 and Timer2 to be executed at 70ms interval.
Timer1 can be defined with a phase equal to 0 and the second Timer2 with a phase of 70ms (phase
of 7 and time base of 10ms).
Any event triggered by the timer associated with the Timer1 processing task shall be followed after
an interval of 70ms by an event from the timer associated with the Timer2 processing task

Timing Diagram: STOP/RUN Transition
Timing diagram of the example provided above with the same preset value of 16 (160ms) for
Timer1 and Timer2.
128 35006144 10/2019

Program Structure
Operation After PLC STOP/RUN
The following table describes the operation of the PLC after a transition from STOP into RUN (see
timing diagram above):

Phase Description
1 ON a STOP RUN transition of the PLC, timing is triggered so that the preset value is reached at

the end of a time period equal to Phase x time base, when the first event is sent out.
2 The current value VALUE of the timer increases from 0 towards the preset value at a rate of one

unit for each pulse of the time base.
3 An event is generated when the current value has reached the preset value, the timer is reset to

0, and then reactivated. The associated event processing is also triggered, if the event is not
masked. If can be deferred, if there is an event processing task of higher or identical priority
already in progress.
35006144 10/2019 129

Program Structure
Input/Output Exchanges in Event Processing

General
With each type of event processing it is possible to use other input/output channels than those for
the event.
As with tasks, exchanges are then performed implicitly by the system before (%I) and after (%Q)
application processing.

Operation
The following table describes the exchanges and processing performed.

Premium/Atrium PLCs
The inputs acquired and the outputs updated are:
 the inputs associated with the channel which caused the event
 the inputs and outputs used during event processing
NOTE: These exchanges may relate:
 to a channel (e.g. counting module) or
 to a group of channels (discrete module). In this case, if the processing modifies, for example,

outputs 2 and 3 of a discrete module, the image of outputs 0 to 7 is then transferred to the
module.

Quantum PLCs
The inputs acquired and the outputs updated are selected in the configuration. Only local
inputs/outputs can be selected.

Programming Rule
The inputs (and the associated group of channels) exchanged during the execution of event
processing are updated (loss of historical values, and thus edges). You should therefore avoid
testing fronts on these inputs in the master (MAST), fast (FAST) or auxiliary (AUXi) tasks.

Phase Description
1 The occurrence of an event reroutes the application program to perform the

processing associated with the input/output channel which caused the event.
2 All inputs associated with event processing are acquired automatically.
3 The event processing is executed. It must be as short as possible.
4 All the outputs associated with the event processing are updated.
130 35006144 10/2019

Program Structure
How to Program Event Processing

Procedure
The table below summarizes the essential steps for programming event processing.

Step Action
1 Configuration phase (for events triggered by input/output modules)

In offline mode, from the configuration editor, select Event Processing (EVT) and the event
processing number for the channel of the input/output module concerned.

2 Unmasking phase
The task which can be interrupted must in particular:
 Enable processing of events at system level: set bit %S38 to 1 (default value).
 Unmask events with the instruction UNMASKEVT (active by default).
 Unmask the events concerned at channel level (for events triggered by input/output

modules) by setting the input/output module's implicit language objects for unmasking of
events to 1. By default, the events are masked.

 Check that the stack of events at system level is not saturated (bit %S39 must be at 0).

3 Event program creation phase
The program must:
 Determine the origin of the event(s) on the basis of the event status word associated with

the input/output module if the module is able to generate several events.
 Carry out the reflex processing associated with the event. This process must be as short as

possible.
 Write the reflex outputs concerned.

Note: the event status word is automatically reset to zero.
35006144 10/2019 131

Program Structure
Illustration of Event Unmasking
This figure shows event unmasking in the MAST task.

Illustration of the Contents of Event Processing
This figure shows the possible contents of event processing (bit test and action).
132 35006144 10/2019

EcoStruxure™ Control Expert
Memory Structure
35006144 10/2019
Application Memory Structure

Chapter 4
Application Memory Structure

Subject of this Chapter
This chapter describes the CPU application memory structure.

What Is in This Chapter?
This chapter contains the following sections:

Section Topic Page
4.1 Input Output Data Addressing Methods 134
4.2 Memory Structure of the Premium, Atrium and Modicon M340 PLCs 137
4.3 Memory Structure of Quantum PLCs 145
35006144 10/2019 133

Memory Structure
Input Output Data Addressing Methods

Section 4.1
Input Output Data Addressing Methods

Input Output Data Addressing Methods

Introduction
The addressing method of data associated with controller input/output depends on the platform,
I/O location, and topology.
A summary of addressing methods is provided for the following platforms:
 Modicon M580 (see page 134)
 Modicon M340 (see page 135)
 Modicon Quantum (see page 135)
 Modicon Premium (see page 136)
 Modicon Momentum (see page 136)

Modicon M580
For information about the Modicon M580 application memory structure, refer to the chapter on
BME P58 xxxx CPU Memory Structure (see Modicon M580, Hardware, Reference Manual).
Data addressing method allowed depending on the module location in the architecture:

Addressing (addressing
example)

Local
rack

RIO Drop DIO CANopen ASI Profibus
EIO x80 EIO Quantum S908

Located I/O
Topological
Addressing

Topological
(%lr.m.c)

X – – X – – X –

IODDT
(%CHr.m.c)

X – – X – – X –

Flat or
Modbus
Addressing

State RAM
(%lx)

– – X X – – – –

Located Memory
(%MWx)

– – X X – – – –

Unlocated I/O
Device DDT
PLC0_dx_ry_sz_Module
(see page 232)

X X X – X X X X

X Allowed addressing method.
– Not allowed addressing method.
134 35006144 10/2019

Memory Structure
Modicon M340
Data addressing method allowed depending on the module location in the architecture:

Modicon Quantum
Data addressing method allowed depending on the module location in the architecture:

Addressing (addressing example) Local
rack

DIO (NOE
scan)

DIO (NOC
scan)

CANopen ASI Profibus

Located I/O
Topological
Addressing

Topological
(%lr.m.c)

X – – X X –

IODDT
(%CHr.m.c)

X – – X X –

Flat or
Modbus
Addressing

State RAM
(%lx)

X – – – – –

Located Memory
(%MWx)

X X X X – X

Unlocated I/O
Device DDT
PLC0_dx_ry_sz_Module
(see page 232)

– – – – – –

X Allowed addressing method.
– Not allowed addressing method.

Addressing (addressing example) Local
rack

RIO Drop DIO (NOE
scan)

DIO (NOC
scan)EIO x80 EIO Quantum S908

Located I/O
Topological
Addressing

Topological
(%lr.m.c)

X – – X – –

IODDT
(%CHr.m.c)

X – – X – –

Flat or
Modbus
Addressing

State RAM
(%lx)

X – X X X –

Located Memory
(%MWx)

X – X X X X

Unlocated I/O
Device DDT
PLC0_dx_ry_sz_Module
(see page 232)

– X – – – –

X Allowed addressing method.
– Not allowed addressing method.
35006144 10/2019 135

Memory Structure
Modicon Premium
Data addressing method allowed depending on the module location in the architecture:

Modicon Momentum
Data addressing method allowed depending on the module location in the architecture:

Addressing (addressing example) Local
rack

DIO
(ETY scan)

DIO
(ETC scan)

CANopen

Located I/O
Topological
Addressing

Topological
(%lr.m.c)

X – – –

IODDT
(%CHr.m.c)

X – – –

Flat or
Modbus
Addressing

State RAM
(%lx)

– – – –

Located Memory
(%MWx)

– X X X

Unlocated I/O
Device DDT
PLC0_dx_ry_sz_Module
(see page 232)

– – – –

X Allowed addressing method.
– Not allowed addressing method.

Addressing (addressing example) Momentum Bus +
I/O-Bus

Located I/O
Topological
Addressing

Topological
(%lr.m.c)

–

IODDT
(%CHr.m.c)

–

Flat or Modbus
Addressing

State RAM
(%lx)

X

Located Memory
(%MWx)

X

Unlocated I/O
Device DDT
PLC0_dx_ry_sz_Module (see page 232)

–

X Allowed addressing method.
– Not allowed addressing method.
136 35006144 10/2019

Memory Structure
Memory Structure of the Premium, Atrium and Modicon M340 PLCs

Section 4.2
Memory Structure of the Premium, Atrium and Modicon M340
PLCs

Subject of this Section
This section describes memory structure and detailed description of the memory zones of the
Modicon Premium, Atrium and M340 PLCs.

What Is in This Section?
This section contains the following topics:

Topic Page
Memory Structure of Modicon M340 PLCs 138
Memory Structure of Premium and Atrium PLCs 142
Detailed Description of the Memory Zones 144
35006144 10/2019 137

Memory Structure
Memory Structure of Modicon M340 PLCs

Overview
The PLC memory supports:
 located application data
 unlocated application data
 the program: task descriptors and executable code, constant words, initial values and

configuration of inputs/outputs

Structure
The data and program are supported by the processor module’s internal RAM.
The following diagram describes the memory structure.

State RAM
For Data (see graphic above) also State RAM is available, if you select Mixed topological and State
RAM in the Configuration tab of a Modicon M340 processor (see EcoStruxure™ Control Expert,
Operating Modes).
To use this option you need Modicon M340 firmware 2.4 or later.
NOTE: If you want to import a legacy LL984 Compact application which uses Modbus request to
communicate with an HMI, you have to use State RAM addressing to preserve the Modbus
exchange between PLC and HMI.
138 35006144 10/2019

Memory Structure
The State RAM contains the following located data:

NOTE: Not all data represented in topological addressing is available in State RAM.
Please refer to Topological/State RAM Addressing of Modicon M340 Discrete Modules
(see Modicon X80, Discrete Input/Output Modules, User Manual) and Topological/State RAM
Addressing of Modicon M340 Analog Modules (see Modicon X80, Analog Input/Output Modules,
User Manual).

Program Backup
If the memory card is present, working properly and not write-protected, the program is saved on
the memory card:
 Automatically, after:
 a download
 online modification
 a rising edge of the system bit %S66 in the project program

 Manually:
 with the command PLC → Project backup → Backup Save
 in an animation table by setting the system bit %S66

NOTE: For detail on %S65, refer to chapter System Bits (see EcoStruxure™ Control Expert,
System Bits and Words, Reference Manual).

The memory card uses Flash technology, therefore no battery is necessary.

Address Object address Data use
0xxxxx %Qr.m.c.d,%Mi output module bits and internal bits
1xxxxx %Ir.m.c.d, %Ii input module bits
3xxxxx %IWr.m.c.d, %IWi input words of input/output modules
4xxxxx %QWr.m.c.d, %MWi output words of input/output modules and internal words

WARNING
LOSS OF DATA - APPLICATION NOT SAVED
The interruption of an application saving procedure by an untimely or rough extraction of the
memory card, may lead to the loss of saved application.The bit %S65 allows managing a
correct extraction.
Failure to follow these instructions can result in death, serious injury, or equipment damage.
35006144 10/2019 139

Memory Structure
Program Restore
If the memory card is present and working properly, the program is copied from the PLC memory
card to the internal memory:
 Automatically after:
 a power cycle

 Manually, with the Control Expert command PLC → Project backup → Backup Restore
NOTE: When you insert the memory card in run or stop mode, you have to do a power cycle to
restore the project on the PLC.

Saved Data
Located, unlocated data, diagnostic buffer are automatically saved in the internal Flash memory at
power-off. They are restored at warm start.

Save_Param
The SAVE_PARAM function does both current and initial parameter adjustment in internal RAM (as
in other PLCs). In this case, the internal RAM and the memory card content are different (%S96 =
0 and the CARDERR LED is on). On cold start (after application restore), the current parameter
are replaced by the last adjusted initial values only if a save to memory card function (Backup Save
or %S66 rising edge) was done.

Save Current Value
On a %S94 rising edge, the current values replace the initial values in internal memory. The
internal RAM and the memory card content are different (%S96 = 0 and the CARDERR LED is on).
On cold start, the current values are replaced by the most recent initial values only if a save to
memory card function (Backup Save or %S66 rising edge) was done.
140 35006144 10/2019

Memory Structure
Delete Files
There are two ways to delete all the files on the memory card:
 Erasing the memory card (delete all files of the file system partition)
 Deleting the content of directory \DataStorage\ (delete only files added by user)
Both actions are performed using %SW93 (see EcoStruxure™ Control Expert, System Bits and
Words, Reference Manual).
The system word %SW93 can only be used after download of a default application in the PLC.

%MW Backup
The values of the %MWi can be saved in the internal Flash memory using %SW96
(see EcoStruxure™ Control Expert, System Bits and Words, Reference Manual). These values will
be restored at cold start, including application download, if the option Initialize of %MW on cold
start is unchecked in the processor Configuration screen (see EcoStruxure™ Control Expert,
Operating Modes).
For %MW words, the values can be saved and restored on cold restart or download if the option
Reset of %MW on cold restart is not checked in the processor Configuration screen. With the %SW96
word, management of memory action %MW internal words (save, delete) and information on the
actions’ states %MW internal words is possible.

Memory Card Specifics
Two types of memory card are available:
 application: these cards contain the application program and Web pages
 application + file storage: these cards contain the application program, data files from Memory

Card File Management EFBs, and Web pages

CAUTION
INOPERABLE MEMORY CARD
Do not format the memory card with a non-Schneider tool. The memory card needs a structure
to contain program and data. Formatting with another tool destroys this structure.
Failure to follow these instructions can result in injury or equipment damage.
35006144 10/2019 141

Memory Structure
Memory Structure of Premium and Atrium PLCs

General
The PLC memory supports:
 located application data,
 unlocated application data,
 the program: task descriptors and executable code, constant words, initial values and

configuration of inputs/outputs.

Structure without Memory Extension Card
The data and program are supported by the internal RAM of the processor module.
The following diagram describes the memory structure.

Structure with Memory Extension Card
The data is supported by the internal RAM of the processor module.
The program is supported by the extension memory card.
The following diagram describes the memory structure.
142 35006144 10/2019

Memory Structure
Memory Backup
The internal RAM is backed up by a Ni-Cad battery supported by the processor module.
The RAM memory cards are backed up by a Ni-Cad battery.

Specificities of Memory Cards
Three types of memory card are offered:
 application: these cards contain the application program. The cards offered use either RAM or

Flash EPROM technology
 application + file storage: in addition to the program, these cards also contain a zone which can

be used to backup/restore data using the program. The cards on offer use either RAM or Flash
EPROM technology

 file storage: these cards can be used to backup/restore data using the program. These cards
use SRAM technology.

The following diagram describes the memory structure with an application and file storage card.

NOTE: On processors with 2 memory card slots, the lower slot is reserved for the file storage
function.
35006144 10/2019 143

Memory Structure
Detailed Description of the Memory Zones

User Data
This zone contains the located and unlocated application data.
 located data:
 %M, %S Boolean and %MW,%SW numerical data
 data associated with modules (%I, %Q, %IW, %QW,%KW etc.)

 unlocated data:
 Boolean and numerical data (instances)
 EFB and DFB instances

User Program and Constants
This zone contains the executable codes and constants of the application.
 executable codes:
 program code
 code associated with EFs, EFBs and the management of I/O modules
 code associated with DFBs

 constants:
 KW constant words
 constants associated with inputs/outputs
 initial data values

This zone also contains the necessary information for downloading the application: graphic codes,
symbols etc.

Other Information
Other information relating to the configuration and structure of the application are also stored in the
memory (in a data or program zone depending on the type of information).
 Configuration: other data relating to the configuration (hardware configuration, software

configuration).
 System: data used by the operating system (task stack, etc.).
 Diagnostics: information relating to process or system diagnostics, diagnostics buffer.
144 35006144 10/2019

Memory Structure
Memory Structure of Quantum PLCs

Section 4.3
Memory Structure of Quantum PLCs

Subject of this Section
This section describes memory structure and detailed description of the memory zones of the
Quantum PLCs.

What Is in This Section?
This section contains the following topics:

Topic Page
Memory Structure of Quantum PLCs 146
Detailed Description of the Memory Zones 149
35006144 10/2019 145

Memory Structure
Memory Structure of Quantum PLCs

General
The PLC memory supports:
 located application data (State Ram),
 unlocated application data,
 the program: task descriptors and executable code, initial values and configuration of

inputs/outputs.

Structure without Memory Extension Card
The data and program are supported by the internal RAM of the processor module.
The following diagram describes the memory structure.
146 35006144 10/2019

Memory Structure
Structure with Memory Extension Card
Quantum 140 CPU 6••• processors can be fitted with a memory extension card.
The data is supported by the internal RAM of the processor module.
The program is supported by the extension memory card.
The following diagram describes the memory structure.

Memory Backup
The internal RAM is backed up by a Ni-Cad battery supported by the processor module.
The RAM memory cards are backed up by a Ni-Cad battery.

Start-up with Application Saved in Backup Memory
The following table describes the different results according to the PLC state, according to the PLC
mem switch (see Quantum using EcoStruxure™ Control Expert, Hardware, Reference Manual),
and also indicates if the box "Auto RUN" is checked or not checked.

PLC State PLC Mem Switch1 Auto RUN in Appl2 Results

NONCONF Start or Off Off Cold Start, application is loaded from Backup memory to
RAM of the PLC. The PLC remains in STOP.

NONCONF Start or Off On Cold Start, application is loaded from Backup memory to
RAM of the PLC. The PLC remains in RUN.

NONCONF Mem Prt or Stop Not Applicable No application loaded. PLC power up in NONCONF state.
Configured Start or Off Off Cold Start, application is loaded from Backup memory to

RAM of the PLC. The PLC remains in STOP.
1 Start and Stop are valid for the 434 and 534 models only and Off is valid for the 311 only. Mem Prt is valid on all

models.
2 The Automatic RUN in the application refers to the application that is loaded.
35006144 10/2019 147

Memory Structure
Specificities of Memory Cards
Three types of memory card are offered:
 application: these cards contain the application program. The cards on offer use either RAM or

Flash EPROM technology
 application + file storage: in addition to the program, these cards also contain a zone which can

be used to backup/restore data using the program. The cards on offer use either RAM or Flash
EPROM technology

 file storage: these cards can be used to backup/restore data using the program. These cards
use SRAM technology.

The following diagram describes the memory structure with an application and file storage card.

NOTE: On processors with 2 memory card slots, the lower slot is reserved for the file storage
function.

Configured Start or Off On Cold Start, application is loaded from Backup memory to
RAM of the PLC. The PLC remains in RUN.

Configured Mem Prt or Stop Do not Care Warm Start, no application loaded. PLC powers up in
previous state.

PLC State PLC Mem Switch1 Auto RUN in Appl2 Results

1 Start and Stop are valid for the 434 and 534 models only and Off is valid for the 311 only. Mem Prt is valid on all
models.

2 The Automatic RUN in the application refers to the application that is loaded.
148 35006144 10/2019

Memory Structure
Detailed Description of the Memory Zones

Unlocated Data
This zone contains unlocated data:
 Boolean and numerical data
 EFB and DFB

Located Data
This zone contains located data (State Ram):

User Program
This zone contains the executable codes of the application.
 program code
 code associated with EFs, EFBs and the management of I/O modules
 code associated with DFBs
 initial variable values
This zone also contains the necessary information for downloading the application: graphic codes,
symbols etc.

Operating System
On 140 CPU 31••/41••/51•• processors, this contains the operating system for processing the
application. This operating system is transferred from an internal EPROM memory to internal RAM
on power up.

Application Backup
A Flash EPROM memory zone of 1435K8, available on processors 140 CPU 31••/41••/51••, can
be used to backup the program and the initial values of variables.
The application stored in this zone is automatically transferred to internal RAM when the PLC
processor is powered up (if the PLC MEM switch is set to off on the processor front panel).

Address Object address Data use
0xxxxx %Qr.m.c.d,%Mi output module bits and internal bits.
1xxxxx %Ir.m.c.d, %Ii input module bits.
3xxxxx %IWr.m.c.d, %IWi input register words of input/output modules.
4xxxxx %QWr.m.c.d, %MWi output words of input/output modules and internal words.
35006144 10/2019 149

Memory Structure
Other Information
Other information relating to the configuration and structure of the application are also stored in the
memory (in a data or program zone depending on the type of information).
 Configuration: other data relating to the configuration (hardware configuration, software

configuration).
 System: data used by the operating system (task stack, etc.).
 Diagnostics: information relating to process or system diagnostics, diagnostics buffer.
150 35006144 10/2019

EcoStruxure™ Control Expert
Operating Modes
35006144 10/2019
Operating Modes

Chapter 5
Operating Modes

Subject of this Chapter
The chapter describes the operating modes of the PLC in the event of power outage and restoral,
the impacts on the application program and the updating of inputs/outputs.
For information about the Modicon M580, refer to BME P58 CPUs Operating Modes
(see Modicon M580, Hardware, Reference Manual).

What Is in This Chapter?
This chapter contains the following sections:

Section Topic Page
5.1 Modicon M340 PLCs Operating Modes 152
5.2 Premium, Quantum PLCs Operating Modes 165
5.3 PLC HALT Mode 176
35006144 10/2019 151

Operating Modes
Modicon M340 PLCs Operating Modes

Section 5.1
Modicon M340 PLCs Operating Modes

Subject of this Section
This section describes the operating modes of the Modicon M340 PLCs.
For information about the Modicon M580, refer to the chapter M580 Operating Modes
(see Modicon M580, Hardware, Reference Manual).

What Is in This Section?
This section contains the following topics:

Topic Page
Processing of Power Outage and Restoral of Modicon M340 PLCs 153
Processing on Cold Start for Modicon M340 PLCs 155
Processing on Warm Restart for Modicon M340 PLCs 160
Automatic Start in RUN for Modicon M340 PLCs 163
Processing of State RAM on STOP Mode for Modicon M340 PLCs 164
152 35006144 10/2019

Operating Modes
Processing of Power Outage and Restoral of Modicon M340 PLCs

General
If the duration of the outage is less than the power supply filtering time, it has no effect on the
program, which continues to run normally. If this is not the case, the program is interrupted and
power restoration processing is activated.
Filtering time:

PLC Alternating Current Direct Current
BMX CPS 2000
BMX CPS 3500
BMX CPS 3540T
BMX CPS 4002

10 ms -

BMX CPS 2010
BMX CPS 3020

- 1 ms
35006144 10/2019 153

Operating Modes
Illustration
The following illustration shows the different power cycle phases.

Operation
The following table describes the power outage processing phases.

Phase Description
1 On power outage, the system saves the application context, the values of application variables,

and the state of the system on internal Flash memory.
2 The system sets all the outputs into fallback state (state defined in configuration).
3 On power restoral, some actions and checks are done to verify if warm restart is available:

 restoring from internal Flash memory application context,
 verification with memory card (presence, application availability),
 verification that the application context is identical to the memory card context,

If all checks are correct, a warm restart (see page 160) is done, otherwise a cold start
(see page 155) is carried out.
154 35006144 10/2019

Operating Modes
Processing on Cold Start for Modicon M340 PLCs

Cause of a Cold Start
The following table describes the different possible causes of a cold start.

Causes Startup characteristics
Loading of an application Cold start forced in STOP
Restore application from memory card, when the
application is different from the one in internal
RAM

Cold start forced in STOP or RUN mode as defined in the
configuration

Restore application from memory card, with
Control Expert commands PLC → Project
backup →

Cold start forced in STOP. The start in RUN mode as
defined in the configuration is not taken into account

RESET button pressed on supply Cold start forced in STOP or RUN mode as defined in the
configuration

RESET button pressed on supply less than
500ms after a power down

Cold start forced in STOP or RUN mode as defined in the
configuration

RESET button pressed on supply after a
processor error, except in the case of a
watchdog error

Cold start forced in STOP. The start in RUN mode as
defined in the configuration is not taken into account

Initialization from Control Expert
Forcing the system bit %S0

Start in STOP or in RUN (retaining the operating mode in
progress at downtime), initialization only of application

Restoral after power supply outage with loss of
context

Cold start forced in STOP or RUN mode as defined in the
configuration

CAUTION
LOSS OF DATA ON APPLICATION TRANSFER
Loading or transferring an application to the PLC typically involves initialization of unlocated
variables.
To save the located variables:
 Avoid the initialization of the %MWi by unchecking Initialize %MWi on cold start in the

configuration screen of the CPU.
It is necessary to assign a topological address to the data if the process requires keeping the
current values of the data when transferring the application.
Failure to follow these instructions can result in injury or equipment damage.
35006144 10/2019 155

Operating Modes
CAUTION
LOSS OF DATA ON APPLICATION TRANSFER
Do not press the RESET button on the power supply. Otherwise, %MWi is reset and initial values
are loaded.
Failure to follow these instructions can result in injury or equipment damage.

CAUTION
RISK OF LOSS OF APPLICATION
If there is no memory Card in the PLC during a cold restart the application is lost.
Failure to follow these instructions can result in injury or equipment damage.
156 35006144 10/2019

Operating Modes
Illustration
The diagram below describes how a cold restart operates.
35006144 10/2019 157

Operating Modes
Operation
The table below describes the program execution restart phases on cold restart.

Processing a cold start by program
It is advisable to test the bit %SW10.0 to detect a cold start and start processing specific to this
cold start.
NOTE: It is possible to test the bit %S0, if the parameter Automatic start in RUN has been
selected. If this is not the case, the PLC starts in STOP, the bit %S0 then switches to 1 on the first
cycle after restart but is not visible to the program because it is not executed.

Phase Description
1 The startup is performed in RUN or in STOP depending on the status of the Automatic start

in RUN parameter defined in the configuration or, if this is in use, depending on the state of the
RUN/STOP input.
Program execution is resumed at the start of the cycle.

2 The system carries out the following:
 Deactivating tasks, other than the master task, until the end of the first master task cycle.
 Initializing data (bits, I/O image, words etc.) with the initial values defined in the data editor

(value set to 0, if no other initial value has been defined). For %MW words, the values can be
retrieved on cold restart if the two conditions are valid :
 the Initialize of %MW on cold restart option (see EcoStruxure™ Control Expert, Operating

Modes) is unchecked in the processor’s configuration screen,
 the internal flash memory has a valid backup (see %SW96 (see EcoStruxure™ Control

Expert, System Bits and Words, Reference Manual)).
Note : If the number of %MW words exceeds the backup size (see the memory structure of
M340 PLCs (see page 138)) during the save operation the remaining words are set to 0.

 Initializing elementary function blocks on the basis of initial data.
 Initializing data declared in the DFBs: either to 0 or to the initial value declared in the DFB type.
 Initializing system bits and words.
 Positioning charts to initial steps.
 Cancelling any forcing.
 Initializing message and event queues.
 Sending configuration parameters to all discrete input/output modules and application-specific

modules.
3 For this first restart cycle the system does the following:

 Relaunches the master task with the %S0 (cold restart) and %S13 (first cycle in RUN) bits set
to 1, and the %SW10 word (detection of a cold restart during the first task cycle) is set to 0.

 Resets the %S0 and %S13 bits to 0, and sets each bit of the word %SW10 to 1 at the end of
this first cycle of the master task.

 Activates the fast task and event processing at the end of the first cycle of the master task.
158 35006144 10/2019

Operating Modes
Output Changes
As soon as a power outage is detected, the outputs are set in the fallback position:
 either they are assigned the fallback value,
 or the current value is maintained,
depending on the choice made in the configuration.
After power restoral, the outputs remain at zero until they are updated by the task.
35006144 10/2019 159

Operating Modes
Processing on Warm Restart for Modicon M340 PLCs

Cause of a Warm Restart
A warm restart may be caused by a power restoral without loss of context.

Illustration
The diagram below describes how a warm restart operates.

CAUTION
RISK OF LOSS OF APPLICATION
If there is no Memory Card in the PLC during a warm restart the application is lost.
Failure to follow these instructions can result in injury or equipment damage.
160 35006144 10/2019

Operating Modes
Operation
The table below describes the program execution restart phases on warm restart.

Processing a Warm Restart by Program
In the event of a warm restart, if you want the application to be processed in a particular way, you
must write the corresponding program to test that %S1 is set to 1 at the start of the master task
program.

SFC Warm start specific features
The Warm start on M340 PLCs is not considered as a real warm start by the CPU. SFC interpreter
does not depend on tasks.
SFC publishes a memory area "ws_data" to the OS that contains SFC-section-specific data to be
saved at a power fail. At the beginning of chart processing the currently active steps are saved to
"ws_data" and processing is marked to be in "critical section". At the end of chart processing the
"critical section" is unmarked.
If a power failure hits into "critical section" this could be detected if this state is active at the
beginning (as the scan is aborted and MAST task is restarted from the beginning). In this case the
workspace might be inconsistent and is restored from the saved data.
Additional information from SFCSTEP_STATE in located data area is used to reconstruct the state
machine.

Phase Description
1 Program execution doesn’t resume from the element where the power outage occurred. The

remaining program is discarded during the warm start. Each task will restart from the
beginning.

2 At the end of the restart cycle, the system carries out the following:
 restore the application’s variable value,
 set bit %S1 to 1,
 the initialization of message and event queues,
 the sending of configuration parameters to all discrete input/output and application-specific

modules,
 the deactivation of the fast task and event processing (until the end of the master task

cycle).
3 The system performs a restart cycle during which it:

 relaunches the master task from beginning of cycle,
 resets bit %S1 to 0 at the end of this first master task cycle,
 reactivates the fast task, event processing at the end of this first cycle of the master task.
35006144 10/2019 161

Operating Modes
When a power failure occurs:
 during first scan %S1 =1 Mast is executed but Fast and Event tasks are not executed.
On power restoral:
 Clears chart, deregisters diagnostics, keeps set actions
 sets steps from saved area
 sets step times from SFCSTEP_STATE
 restores elapsed time for timed actions
NOTE: SFC interpreter is independent, if the transition is valid, the SFC chart evolves while %S1
is true.

Output Changes
As soon as a power outage is detected, the outputs are set in the fallback position:
 either they are assigned the fallback value,
 or the current value is maintained,
depending on the choice made in the configuration.
After power restoral, the outputs stay in security mode (equal to 0) until they are updated by a
running task.
162 35006144 10/2019

Operating Modes
Automatic Start in RUN for Modicon M340 PLCs

Description
Automatic start in RUN is a processor configuration option. This option forces the PLC to start in
RUN after a cold restart (see page 155), except after an application has been loaded onto the PLC.
For Modicon M340 this option is not taken into account when the power supply RESET button is
pressed after a processor error, except in the case of a watchdog error.

WARNING
UNEXPECTED SYSTEM BEHAVIOR - UNEXPECTED PROCESS START
The following actions will trigger automatic start in RUN:
 Restoring the application from memory card,
 Unintentional or careless use of the reset button.
To avoid an unwanted restart when in RUN mode use:
 The RUN/STOP input on Modicon M340
Failure to follow these instructions can result in death, serious injury, or equipment damage.
35006144 10/2019 163

Operating Modes
Processing of State RAM on STOP Mode for Modicon M340 PLCs

General
With Modicon M340 firmware 2.4 or later, you can access the modules either via topological or
State RAM addresses. Please also refer to Memory Tab (see EcoStruxure™ Control Expert,
Operating Modes).
NOTE: The State RAM is refreshed in PLC RUN mode only.
The State RAM is not refreshed in PLC STOP mode.
164 35006144 10/2019

Operating Modes
Premium, Quantum PLCs Operating Modes

Section 5.2
Premium, Quantum PLCs Operating Modes

Subject of this Section
This section describes the operating modes of the Premium and Quantum PLCs.

What Is in This Section?
This section contains the following topics:

Topic Page
Processing of Power Outage and Restoral for Premium/Quantum PLCs 166
Processing on Cold Start for Premium/Quantum PLCs 168
Processing on Warm Restart for Premium/Quantum PLCs 172
Automatic Start in RUN for Premium/Quantum 175
35006144 10/2019 165

Operating Modes
Processing of Power Outage and Restoral for Premium/Quantum PLCs

General
If the duration of the outage is less than the power supply filtering time, it has no effect on the
program which continues to run normally. If this is not the case, the program is interrupted and
power restoral processing is activated.
Filtering time:

Illustration
The illustration shows the different types of power restoral detected by the system.

PLC Alternating Current Direct Current
Premium 10ms 1ms
Atrium 30ms -
Quantum 10ms 1ms
166 35006144 10/2019

Operating Modes
Operation
The table below describes the power outage processing phases.

Power Outage on a Rack, Other than Rack 0
All the channels on this rack are seen as in error by the processor, but the other racks are not
affected. The values of the inputs in error are no longer updated in the application memory and are
reset to zero in a discrete input module, unless they have been forced, in which case they are
maintained at the forcing value.
If the duration of the outage is less than the filtering time, it has no effect on the program which
continues to run normally.

Phase Description
1 On power outage the system stores the application context and the time of outage.
2 It sets all the outputs in the fallback state (state defined in configuration).
3 On power restoral, the saved context is compared to the current one, which defines the type of

startup to be performed:
 if the application context has changed (i.e. loss of system context or new application), the

PLC initializes the application: cold start,
 if the application context is the same, the PLC carries out a restart without initialization of

data: warm restart.
35006144 10/2019 167

Operating Modes
Processing on Cold Start for Premium/Quantum PLCs

Cause of a Cold Start
The following table describes the different possible causes of a cold start.

Causes Startup characteristics
Loading of an application Cold start forced in STOP
RESET button pressed on processor
(Premium)

Cold start forced in STOP or RUN mode as defined in the
configuration

RESET button pressed on the processor
after a processor or system error (Premium).

Cold start forced in STOP

Movement of handle or insertion/removal of
a PCMCIA memory card

Cold start forced in STOP or RUN mode as defined in the
configuration

Initialization from Control Expert
Forcing the system bit %S0

Start in STOP or in RUN (retaining the operating mode in
progress at downtime), without initialization of discrete
input/output and application-specific modules

Power restored after power supply outage
with loss of context

Cold start forced in STOP or RUN mode as defined in the
configuration

CAUTION
LOSS OF DATA ON APPLICATION TRANSFER
Loading or transferring an application to the PLC typically involves initialization of unlocated
variables.
To save located variables with Premium and Quantum PLCs:
 Save and restore %M and %MW by clicking PLC → Transfer Data.

For Premium PLCs:
 Avoid the initialization of %MW by un-checking Initialize %MWi on cold start in the configuration

screen of the CPU.
For Quantum PLCs:
 Avoid the initialization of %MW by un-checking Initialize %MWi in the configuration screen of

the CPU.
It is necessary to assign a topological address to the data if the process requires keeping the
current values of the data when transferring the application.
Failure to follow these instructions can result in injury or equipment damage.
168 35006144 10/2019

Operating Modes
Illustration
The diagram below describes how a cold restart operates.
35006144 10/2019 169

Operating Modes
Operation
The table below describes the program execution restart phases on cold restart.

Processing a Cold Start by Program
It is advisable to test the bit %SW10.0 to detect a cold start and start processing specific to this
cold start.
NOTE: It is possible to test the bit %S0, if the parameter Automatic start in RUN has been
selected. If this is not the case, the PLC starts in STOP, the bit %S0 then switches to 1 on the first
cycle after restart but is not visible to the program because it is not executed.

Phase Description
1 The startup is performed in RUN or in STOP depending on the status of the Automatic start

in RUN parameter defined in the configuration or, if this is in use, depending on the state of the
RUN/STOP input.
Program execution is resumed at the start of the cycle.

2 The system carries out the following:
 the initialization of data (bits, I/O image, words etc.) with the initial values defined in the data

editor (value set to 0, if no other initial value has been defined).
For %MW words, the values can be retained on cold restart if the Reset of %MW on cold
restart option is unchecked in the Configuration screen of the processor.
NOTE: %MWi is not retained if a new program is loaded.

 the initialization of elementary function blocks on the basis of initial data
 the initialization of data declared in the DFBs: either to 0 or to the initial value declared in the

DFB type
 the initialization of system bits and words
 the deactivation of tasks, other than the master task, until the end of the first master task

cycle
 the positioning of charts to initial steps
 the cancellation of any forcing
 the initialization of message and event queues
 the sending of configuration parameters to all discrete input/output modules and application-

specific modules
3 For this first restart cycle the system does the following:

 relaunches the master task with the %S0 (cold restart) and %S13 (first cycle in RUN) bits set
to 1, and the %SW10 word (detection of a cold restart during the first task cycle) is set to 0

 resets the %S0 and %S13 bits to 0, and sets each bit of the word %SW10 to 1 at the end of
this first cycle of the master task

 activates the fast task and event processing at the end of the first cycle of the master task
170 35006144 10/2019

Operating Modes
Output Changes, for Premium and Atrium
As soon as a power outage is detected, the outputs are set in the fallback position:
 either they are assigned the fallback value, or
 the current value is maintained
depending on the choice made in the configuration.
After power restore, the outputs remain at zero until they are updated by the task.

Output Changes, for Quantum
As soon as a power outage is detected,
 the local outputs are set to zero
 the outputs of the remote or distributed extension racks are set in the fallback position
After power is restored, the outputs remain at zero until they are updated by the task.
NOTE: The behavior of forced outputs was changed between Modsoft/NxT/Concept and
Control Expert.
With Modsoft/NxT/Concept, you cannot force outputs if the Quantum processor memory protection
switch is set to "On".
With Control Expert, you can force outputs if the Quantum processor memory protection switch is
set to "On".
With Modsoft/NxT/Concept, forced outputs retain their status after a cold start.
With Control Expert, forced outputs lose their status after a cold start.

For Quantum 140 CPU 31••/41••/51••
These processors have a Flash EPROM memory of 1,435 KB which can be used to save the
program and the initial values of variables.
When power is restored, you can choose the desired operating mode using the PLC MEM switch
on the processor front panel. For detailed information on how this switch works, you can consult
the Quantum manual (see Quantum using EcoStruxure™ Control Expert, Hardware, Reference
Manual).
 off position: The application contained in this zone is automatically transferred to internal RAM

when the PLC processor is powered up: cold restart of the application.
on position: The application contained in this zone is not transferred to internal RAM: warm
restart of the application.

CAUTION
UNEXPECTED APPLICATION BEHAVIOR - FORCED VARIABLES
Check your forced variables and memory protection switch when shifting between
Modsoft/NxT/Concept and Control Expert.
Failure to follow these instructions can result in injury or equipment damage.
35006144 10/2019 171

Operating Modes
Processing on Warm Restart for Premium/Quantum PLCs

Cause of a Warm Restart
A warm restart may be caused:
 by a power restoral without loss of context
 by the system bit %S1 being set to 1 by the program
 by Control Expert from the terminal
 by pressing the RESET button of the power supply module of rack 0 (on Premium PLC)

Illustration
The diagram below describes how a warm restart operates.
172 35006144 10/2019

Operating Modes
Operation
The table below describes the program execution restart phases on warm restart.

Processing a Warm Restart by Program
In the event of warm restart, if you want the application to be processed in a particular way, you
must write the corresponding program conditional on the test that %S1 is set to 1 at the start of the
master task program.
For Quantum PLCs, the switch on the front panel of the processor can be used to configure
operating modes. For further details, see Quantum documentation (see Quantum using
EcoStruxure™ Control Expert, Hardware, Reference Manual).

Output Changes, for Premium and Atrium
As soon as a power outage is detected, the outputs are set in the fallback position:
 either they are assigned the fallback value, or
 the current value is maintained.
 depending on the choice made in the configuration.
After power restoral, the outputs remain in the fallback position until they are updated by the task.
NOTE: after a power on while the CPU is not started, outputs are in security mode state (equal to
0). After the CPU start, if the module didn't stay powered on, the maintain state is lost and the
output stay in state 0.

Output Changes, for Quantum
As soon as a power outage is detected:
 the local outputs are set to zero
 the outputs of the remote or distributed extension racks are set in the fallback position
After power restoral, the outputs remain in the fallback position until they are updated by the task.

Phase Description
1 Program execution resumes starting from the element where the power outage occurred,

without updating the outputs.
2 At the end of the restart cycle, the system carries out the following:

 the initialization of message and event queues
 the sending of configuration parameters to all discrete input/output and application-specific

modules
 the deactivation of the fast task and event processing (until the end of the master task cycle)

3 The system performs a restart cycle during which it:
 re-acknowledges all the input modules
 relaunches the master task with the bits %S1 (warm restart) set to 1
 resets bit %S1 to 0 at the end of this first master task cycle
 reactivates the fast task, the auxiliary tasks and event processing at the end of this first cycle

of the master task
35006144 10/2019 173

Operating Modes
Output Changes, for Extension Rack
If power outage occurs on rack where CPU is located:
 Fallback state as soon as CPU loss is detected
 Security state during I/O configuration
 State calculated by CPU after the first run of the task driving this output
After power is restored, the outputs remain in the fallback position until they are updated by the task
174 35006144 10/2019

Operating Modes
Automatic Start in RUN for Premium/Quantum

Description
Automatic start in RUN is a processor configuration option. This option forces the PLC to start in
RUN after a cold restart (see page 168), except after an application has been loaded onto the PLC.
For Quantum PLCs, automatic start in RUN also depends on the position of the switch on the front
panel of the processor. For more details, refer to the Quantum documentation (see Quantum using
EcoStruxure™ Control Expert, Hardware, Reference Manual).

WARNING
UNEXPECTED SYSTEM BEHAVIOR - UNEXPECTED PROCESS START
The following actions will trigger "automatic start in RUN":
 Inserting the PCMCIA card when the PLC is powered up (Premium, Quantum),
 Replacing the processor while powered up (Premium, Quantum),
 Unintentional or careless use of the reset button,
 If the battery is found to be defective in the event of a power outage (Premium, Quantum).
To avoid an unwanted restart when in RUN mode:
 We stongly recommend to use the RUN/STOP input on Premium PLCs or the switch on the

front of the panel of the processor for Quantum PLCs
 We strongly recommend not to use memorized inputs as RUN/STOP input of the PLC.
Failure to follow these instructions can result in death, serious injury, or equipment damage.
35006144 10/2019 175

Operating Modes
PLC HALT Mode

Section 5.3
PLC HALT Mode

PLC HALT Mode

At a Glance
The following actions switches the PLC to HALT mode:
 using the HALT instruction
 watchdog overflow
 Program execution error (division by zero, overflow, etc.) if the bit %S78 (see EcoStruxure™

Control Expert, System Bits and Words, Reference Manual) is set to 1.

Precaution

WARNING
UNEXPECTED APPLICATION BEHAVIOR
When the PLC is in Halt, all tasks are stopped. Check the behavior of the associated I/Os to
ensure that the consequences of the PLC Halt on the application are acceptable.
Failure to follow these instructions can result in death, serious injury, or equipment damage.
176 35006144 10/2019

EcoStruxure™ Control Expert
Data Description
35006144 10/2019
Data Description

Part III
Data Description

In This Part
This part describes the different data types that can be used in a project, and how to implement
them.

What Is in This Part?
This part contains the following chapters:

Chapter Chapter Name Page
6 General Overview of Data 179
7 Data Types 187
8 Data Instances 255
9 Data References 271
35006144 10/2019 177

Data Description
178 35006144 10/2019

EcoStruxure™ Control Expert
General Overview of Data
35006144 10/2019
General Overview of Data

Chapter 6
General Overview of Data

Subject of this Chapter
This chapter provides a general overview of:
 the different data types
 the data instances
 the data references

What Is in This Chapter?
This chapter contains the following topics:

Topic Page
General 180
General Overview of the Data Type Families 181
Overview of Data Instances 184
Overview of the Data References 186
35006144 10/2019 179

General Overview of Data
General

Introduction
A data item designates an object which can beinstantiated such as:
 a variable,
 a function block.
Data is defined in three phases. These are:
 the data types phase, which specifies the following:
 its category,
 its format.

 the data instances phase, which defines its storage location and property, which is:
 located, or
 unlocated.

 the data references phase, which defines its means of access:
 by immediate value,
 by name,
 by address.

Illustration
The following are the three phases that characterize the data:

Instantiating a data item consists in allocating it a memory slot according to its type.
Referencing a data item consists in defining a reference for it (name, address, etc.) allowing it to
be accessed in the memory.
180 35006144 10/2019

General Overview of Data
General Overview of the Data Type Families

Introduction
A data type is a piece of software information which specifies for a data item:
 its structure
 its format
 a list of its attributes
 its behavior
These properties are shared by all instances of the data type.

Illustration
The data type families are filed in different categories (dark gray).
35006144 10/2019 181

General Overview of Data
Definitions
Data type families and their definitions.

Family Definition
EDT Elementary data types, such as:

 Bool
 Int
 Byte
 Word
 Dword
 etc.

DDT Derived Data Types, such as:
 Arrays, which contain elements of the same type:
 Bool tables (EDT tables)
 EBool tables (Device DDT Arrays)
 tables of tables (DDT tables)
 tables of structures (DDT tables)

 structures, which contain elements of the different types:
 Bool structures, Word structures, etc. (EDT structures)
 EBool tables (Device DDT structure)
 structures of tables, structures of structures, structures of tables/structures (DDT

structures)
 Bool structures, table structures, etc. (EDT and DDT structures)
 structures concerning input/output data (IODDT structures)

Device DDT Device Derived Data Types, such as:
 tables, which contain elements of the same type:
 Bool tables (EDT tables)
 tables of tables (DDT tables)
 tables of structures (DDT tables)

 structures, which contain elements of the different types:
 Bool structures, Word structures, etc. (EDT structures)
 structures of tables, structures of structures, structures of tables/structures (DDT

structures)
 Bool structures, table structures, etc. (EDT and DDT structures)
 structures concerning input/output data
 Structures containing variables that restore the status properties of an action or

transition of a Sequential Function Chart
182 35006144 10/2019

General Overview of Data
EFB Elementary Function Blocks written in C language. These comprise:
 input variables
 internal variables
 output variables
 a processing algorithm

DFB Derived Function Blocks written in automation languages (Structured Text, Instruction List,
etc.). These comprise:
 input variables
 internal variables
 output variables
 a processing algorithm

Family Definition
35006144 10/2019 183

General Overview of Data
Overview of Data Instances

Introduction
A data instance is an individual functional entity, which has all the characteristics of the data type
to which it belongs.
One or more instances can belong to a data type.
The data instance can have a memory allocation that is:
 unlocated or
 located

Illustration
Memory allocation of instances (dark gray) belonging to the different types.
184 35006144 10/2019

General Overview of Data
Definitions
Definition of the memory allocations of data instances.

Data instance Definition
Unlocated The memory slot of the instance is automatically allocated by the system and can

change for each generation of the application.
The instance is located by a name (symbol) chosen by the user.

Located The memory slot of the instance is fixed, predefined and never changes.
The instance is located by a name (symbol) chosen by the user and a topological
address defined by the manufacturer, or by the topological address of the
manufacturer only.
35006144 10/2019 185

General Overview of Data
Overview of the Data References

Introduction
A data reference allows the user to access the instance of this data either by:
 immediate value, true only for data of type EDT
 address settings, true only for data of type EDT
 name (symbol), true for all EDT, DDT, EFB, DFB data types, as well as for SFC objects

Illustration
Possible data references according to data type (dark gray).
186 35006144 10/2019

EcoStruxure™ Control Expert
Data Types
35006144 10/2019
Data Types

Chapter 7
Data Types

Subject of this Chapter
This chapter describes all the data types that can be used in an application.

What Is in This Chapter?
This chapter contains the following sections:

Section Topic Page
7.1 Elementary Data Types (EDT) in Binary Format 188
7.2 Elementary Data Types (EDT) in BCD Format 200
7.3 Elementary Data Types (EDT) in Real Format 206
7.4 Elementary Data Types (EDT) in Character String Format 211
7.5 Elementary Data Types (EDT) in Bit String Format 214
7.6 Derived Data Types (DDT/IODDT/Device DDT) 218
7.7 Function Block Data Types (DFB\EFB) 235
7.8 Generic Data Types (GDT) 243
7.9 Data Types Belonging to Sequential Function Charts (SFC) 245

7.10 Compatibility Between Data Types 247
7.11 Reference Data Type Declarations 251
35006144 10/2019 187

Data Types
Elementary Data Types (EDT) in Binary Format

Section 7.1
Elementary Data Types (EDT) in Binary Format

Subject of this Section
This section describes Binary format data types. These are:
 Boolean types
 Integer types
 Time types

What Is in This Section?
This section contains the following topics:

Topic Page
Overview of Data Types in Binary Format 189
Boolean Types 191
Integer Types 197
The Time Type 199
188 35006144 10/2019

Data Types
Overview of Data Types in Binary Format

Introduction
The data types in Binary format belong to the EDT (Elementary data type) family, which includes
single rather than derived data types (tables, structures, function blocks).

Reminder Concerning Binary Format
A data item in binary format is made up of one or more bits, where each of these is represented by
one of the base 2 figures (0 or 1).
The scale of the data item depends on the number of bit(s) of which it is made.
Example:

A data item can be:
 signed. Here the highest ranking bit is the sign bit:
 0 indicates a positive value
 1 indicates a negative value
The range of values is:

 unsigned. Here all the bits represent the value
The range of values is:

Bits=number of bits (format).
35006144 10/2019 189

Data Types
Data Types in Binary Format
List of data types:

Type Designation Format (bits) Default value
BOOL Boolean 8 0=(False)
EBOOL Boolean with forcing and edge detection 8 0=(False)
INT Integer 16 0
DINT Double integer 32 0
UINT Unsigned integer 16 0
UDINT Unsigned double integer 32 0
TIME Unsigned double integer 32 T=0s
190 35006144 10/2019

Data Types
Boolean Types

At a Glance
There are three types of boolean:
 BOOL (see page 191) type, which contains only the value FALSE (=0) or TRUE (=1).
 EBOOL (see page 192) type, which contains the value FALSE (=0) or TRUE (=1) but also

information concerning the management of falling or rising edges and forcing.
 ANY_BOOL (see page 194) type, only declared as a referenced data type that combines BOOL

and EBOOL types.

Principle of the BOOL Type
This type takes up one memory byte, but the value is only stored in 1 bit.
The default value for this type is FALSE (=0).
It is accessible via an address containing the offset of the corresponding byte:
Address settings:

In the case of the word extracted bit, it is accessible via an address containing the following
information:
 an offset of the corresponding byte
 the rank defining its position in the word
35006144 10/2019 191

Data Types
Address settings:

Principle of the EBOOL Type
This type takes up one memory byte which contains:
 the bit for the value (V),
 the history bit (H) for managing rising or falling edges. Each time the object status changes, the

value is copied to this bit,
 the bit containing the forcing status (F). Equal to 0 if the object is not forced and equal to 1 if the

object is forced.
The default value for the bits associated with the EBOOL type is FALSE (=0).
It is accessible via an address specifying the offset of the corresponding byte:
Address settings:
192 35006144 10/2019

Data Types
EBOOL Type Historical Trend Diagram
The trend diagram below shows the main statuses of the value and history bits associated with the
EBOOL type.
The rising edges of the value bit (1, 4) are copied to the history bit in the next PLC cycle (2, 5). The
falling edges of the value bit (2, 7) are copied to the history bit of the next PLC cycle (3, 8).

EBOOL Type Trend Diagram and Forcing
The trend diagram below shows the main statuses of the value, history, and forcing bits associated
with the EBOOL type.
The rising edges of the value bit (1, 4) are copied to the history bit in the next PLC cycle (2, 5). The
falling edges of the value bit (2, 7) are copied to the history bit in the next PLC cycle (3, 8). Between
(4 and 5), the forcing bit equals 1 while the value and history bits remain at 1.
35006144 10/2019 193

Data Types
Principle of the ANY_BOOL Type
The ANY_BOOL type can be used by supervision tools (a SCADA for example) to reserve variables
declared as generic data type. The generic data type is the element shared with Control Expert.
An ANY_BOOL type variable is declared as a reference, using the REF_TO keyword. More details
on referencing and dereferencing are provided in the topic on Reference Data Type Declarations
(see page 251).
NOTE: Implicit conversion is allowed on dereferenced ANY_BOOL type variable (BOOL_TO_*).

Usage limitation of ANY_BOOL type:
 The ANY_BOOL type cannot be used to declare a variable in Control Expert application. A

variable is declared using a reference to ANY_BOOL type with keyword REF_TO.
 Referencing REF_TO_ANY_BOOL is not allowed in program.

MyRefToAnyBoolVar := REF(MyVar); is not allowed (whatever MyVar is: BOOL or EBOOL).
 In an EF or EFB, ANY_BOOL type cannot be used to declare a parameter or variable, even as a

reference with keyword REF_TO.
 To reference an EBOOL, only the edge history is managed. The forcing functionality is not

managed by the ANY_BOOL type when referencing an EBOOL.
 In a SCADA system, the ANY_BOOL type variable is the shared element, the data dictionary

provides the final type of the ANY_BOOL reference (BOOL or EBOOL).
 A reference to a reference is not supported.

Cascading dereference is not supported (for example, MyAnyBool1^MyAnyBool2^.xy is not
supported).

Platform: ANY_BOOL type is used on the following platforms:
 Modicon M580 (OS version ≥ V2.00)
 Modicon Quantum 140CPU6•••• (OS version ≥ V3.30)
 Modicon M340 (OS version ≥ V2.70)
Time stamping: An ANY_BOOL reference variable can only be time stamped in system time
stamping (see System Time Stamping, User Guide) mode if the referenced variable is a constant
(IsConstant attribute enabled). The referenced variable can be associated to:
 A BMX ERT 1604 T source.
 A BMX CRA 312 10 source.
 A BME CRA 312 10 source.
 A Modicon M580 CPU source (OS version ≥ V2.00).
 A topological variable (for example %M100).
194 35006144 10/2019

Data Types
PLC Variables Belonging to Boolean Types
List of variables

Compatibility Between BOOL and EBOOL
The operations authorized between these two types of variables are:
 value copying
 address copying
Copies between types

Compatibility between the parameters of elementary functions (EF)

Variable Type
Internal bit EBOOL
System bit BOOL
Word extracted bit BOOL
%I inputs
Module error bit BOOL
Channel error bit BOOL
Input bit EBOOL
%Q outputs
Output bit EBOOL

BOOL destination EBOOL destination
BOOL source Yes Yes
EBOOL source Yes Yes

Effective parameter
(external to EF)

Formal BOOL parameter
(internal to EF)

Formal EBOOL parameter
(internal to EF)

BOOL Yes No
EBOOL In ->Yes

In-Out ->No
Out ->Yes

Yes
35006144 10/2019 195

Data Types
Compatibility between the parameters of block functions (EFB\DFB)

Compatibility between array variables

Compatibility between static variables

Compatibility
EBOOL data types follow the rules below:
 An EBOOL type variable cannot be passed as a BOOL type input/output parameter.
 EBOOL arrays cannot be passed as ANY type parameters of an FFB.
 BOOL and EBOOL arrays are not compatible for instructing assignment (same rule as for FFB

parameters).
 On Quantum:
 EBOOL type located variables cannot be passed as EBOOL type input/output parameters.
 EBOOL arrays cannot be passed as parameters of a DFB.

Effective parameter
(external to FB)

Formal BOOL parameter
(internal to FB)

Formal EBOOL parameter
(internal to FB)

BOOL Yes In ->Yes
In-Out ->No
Out -> Yes

EBOOL In ->Yes
In-Out ->No
Out -> Yes

Yes

ARRAY[i..j) OF BOOL
destination

ARRAY[i..j) OF EBOOL
destination

ARRAY[i..j) OF BOOL source Yes No
ARRAY[i..j) OF EBOOL source No Yes

BOOL (%MW:xi) direct
addressing

EBOOL (%Mi) direct
addressing

BOOL (Var:BOOL) declared variable Yes No
EBOOL (Var:EBOOL) declared variable No Yes
196 35006144 10/2019

Data Types
Integer Types

At a Glance
Integer types are used to represent a value in different bases. These are:
 base 10 (decimal) by default. Here the value is signed or unsigned depending on the integer

type
 base 2 (binary). Here the value is unsigned and the prefix is 2#
 base 8 (octal). Here the value is unsigned and the prefix is 8#
 base 16 (hexadecimal). Here the value is unsigned and the prefix is 16#
NOTE: In decimal representation, if the chosen type is signed, the value can be preceded by the
+ sign or - sign (the + sign is optional).

Integer Type (INT)
Signed type with a 16-bit format.
This table shows the range in each base.

Double Integer Type (DINT)
Signed type with a 32-bit format.
This table shows the range in each base.

Base from... to...
Decimal -32768 32767
Binary 2#1000000000000000 2#0111111111111111
Octal 8#100000 8#077777
Hexadecimal 16#8000 16#7FFF

Base from... to...
Decimal -2147483648 2147483647
Binary 2#10000000000000000000000000000000 2#01111111111111111111111111111111
Octal 8#20000000000 8#17777777777
Hexadecimal 16#80000000 16#7FFFFFFF
35006144 10/2019 197

Data Types
Unsigned Integer Type (UINT)
Unsigned type with a 16-bit format.
This table shows the range in each base.

Unsigned Double Integer Type (UDINT)
Unsigned type with a 32-bit format.
This table shows the range in each base.

Base from... to...
Decimal 0 65535
Binary 2#0 2#1111111111111111
Octal 8#0 8#177777
Hexadecimal 16#0 16#FFFF

Base from... to...
Decimal 0 4294967295
Binary 2#0 2#11111111111111111111111111111111
Octal 8#0 8#37777777777
Hexadecimal 16#0 16#FFFFFFFF
198 35006144 10/2019

Data Types
The Time Type

At a Glance
The Time type T# or TIME# is represented by an unsigned double integer (UDINT) (see page 197)
type.
It expresses a duration in milliseconds, which approximately represents a maximum duration of 49
days.
The units of time authorized to represent the value are:
 days (D)
 hours (H)
 minutes (M)
 seconds (S)
 milliseconds (MS)

Entering a Value
This table shows the possible ways of entering the maximum value of the Time type, according the
authorized units of time.

Diagram Comment
T#4294967295MS value in milliseconds
T#4294967S_295MS value in seconds\milliseconds
T#71582M_47S_295MS value in minutes\seconds\milliseconds
T#1193H_2M_47S_295MS value in hours\minutes\seconds\milliseconds
T#49D_17H_2M_47S_295MS value in days\hours\minutes\seconds\milliseconds
35006144 10/2019 199

Data Types
Elementary Data Types (EDT) in BCD Format

Section 7.2
Elementary Data Types (EDT) in BCD Format

Subject of this section
This section describes BCD format (Binary Coded Decimal) data types. These are:
 Date type
 Time of Day type (TOD)
 Date and Time (DT) type

What Is in This Section?
This section contains the following topics:

Topic Page
Overview of Data Types in BCD Format 201
The Date Type 203
The Time of Day (TOD) Type 204
The Date and Time (DT) Type 205
200 35006144 10/2019

Data Types
Overview of Data Types in BCD Format

Introduction
The data types in BCD format belong to the EDT (Elementary data type) family, which includes
single rather than derived data types (tables, structures, function blocks).

Reminder Concerning BCD Format
The Binary Coded Decimal (BCD) format is used to represent decimal numbers between 0 and 9
using a group of four bits (half-byte).
In this format, the four bits used to code the decimal numbers have a range of unused
combinations.
Correspondence table:

Example of coding using a 16 bit format:

Decimal Binary
0 0000
1 0001
2 0010
3 0011
4 0100
5 0101
6 0110
7 0111
8 1000
9 1001

1010 (unused)
1011 (unused)
1100 (unused)
1101 (unused)
1110 (unused)
1111 (unused)

Decimal value
2450

2 4 5 0

Binary value 0010 0100 0101 0000
35006144 10/2019 201

Data Types
Example of coding using a 32 bit format:

Data Types in BCD Format
Three data types:

Decimal value
78993016

7 8 9 9 3 0 1 6

Binary value 0111 1000 1001 1001 0011 0000 0001 0110

Type Designation Scale (bits) Default value
DATE Date 32 D#1990-01-01
TIME_OF_DAY Time of day 32 TOD#00:00:00
DATE_AND_TIME Date and Time 64 DT#1990-01-01-00:00:00
202 35006144 10/2019

Data Types
The Date Type

At a Glance
The Date type in 32 bit format contains the following information:
 the year coded in a 16-bit field (4 most significant half-bytes)
 the month coded in an 8-bit field (2 half bytes)
 the day coded in an 8-bit field (2 least significant half bytes)
Representation in BCD format of the date 2001-09-20:

Syntax Rules
The Date type is entered as follows: D#<Year>-<Month>-<Day>
This table shows the lower/upper limits in each field.

Example:

Year (2001) Month (09) Day (20)
0010 0000 0000 0001 0000 1001 0010 0000

Field Limits Comment
Year [1990,2099]
Month [01,12] The left 0 is always displayed, but can be omitted at the

time of entry
Day [01,31] For the months 01\03\05\07\08\10\12

[01,30] For the months 04\06\09\11
[01,29] For the month 02 (leap years)
[01,28] For the month 02 (non leap years)

Entry Comments
D#2001-1-1 The left 0 of the month and the day can be omitted
d#1990-02-02 The prefix can be written in lower case
35006144 10/2019 203

Data Types
The Time of Day (TOD) Type

At a Glance
The Time of Day type coded in 32 bit format contains the following information:
 the hour coded in an 8-bit field (2 most significant half-bytes)
 the minutes coded in an 8-bit field (2 half bytes)
 the seconds coded in an 8-bit field (2 half bytes)
NOTE: The 8 least significant bits are unused.
Representation in BCD format of the time of day 13:25:47:

Syntax Rules
The Time of Day type is entered as follows: TOD#<Hour>:<Minutes>:<Seconds>
This table shows the lower/upper limits in each field.

Example:

Hour (13) Minutes (25) Seconds (47) Least significant byte
0001 0011 0010 0101 0100 0111 Unused

Field Limits Comment
Hour [00,23] The left 0 is always displayed, but can be omitted at the time of entry
Minute [00,59] The left 0 is always displayed, but can be omitted at the time of entry
Second [00,59] The left 0 is always displayed, but can be omitted at the time of entry

Entry Comment
TOD#1:59:0 The left 0 of the hours and seconds can be omitted
tod#23:10:59 The prefix can be written in lower case
Tod#0:0:0 The prefix can be mixed (lower\upper case)
204 35006144 10/2019

Data Types
The Date and Time (DT) Type

At a Glance
The Date and Time type coded in 64 bit format contains the following information:
 The year coded in a 16-bit field (4 most significant half-bytes)
 the month coded in an 8-bit field (2 half bytes)
 the day coded in an 8-bit field (2 half bytes)
 the hour coded in an 8-bit field (2 half bytes)
 the minutes coded in an 8-bit field (2 half bytes)
 the seconds coded in an 8-bit field (2 half bytes)
NOTE: The 8 least significant bits are unused.
Example: Representation in BCD format of the date and Time 2000-09-20:13:25:47.

Syntax Rules
The Date and Time type is entered as follows:
 DT#<Year>-<Month>-<Day>-<Hour>:<Minutes>:<Seconds>
This table shows the lower/upper limits in each field.

Example:

Year (2000) Month (09) Day (20) Hour (13) Minute (25) Seconds (47) Least
significant byte

0010 0000 0000 0000 0000 1001 0010 0000 0001 0011 0010 0101 0100 0111 Unused

Field Limits Comment
Year [1990,2099]
Month [01,12] The left 0 is always displayed, but can be omitted during entry
Day [01,31] For the months 01\03\05\07\08\10\12

[01,30] For the months 04\06\09\11
[01,29] For the month 02 (leap years)
[01,28] For the month 02 (non leap years)

Hour [00,23] The left 0 is always displayed, but can be omitted during entry
Minute [00,59] The left 0 is always displayed, but can be omitted during entry
Second [00,59] The left 0 is always displayed, but can be omitted during entry

Entry Comment
DT#2000-1-10-0:40:0 The left 0 of the month\hour\second can be omitted
dt#1999-12-31-23:59:59 The prefix can be written in lower case
Dt#1990-10-2-12:02:30 The prefix can be mixed (lower\upper case)
35006144 10/2019 205

Data Types
Elementary Data Types (EDT) in Real Format

Section 7.3
Elementary Data Types (EDT) in Real Format

Presentation of the Real Data Type

Introduction
The data types in Real format belong to the EDT (Elementary data type) family, which includes
single rather than derived data types (tables, structures, function blocks).

Reminder Concerning Real Format
The Real format (floating point in ANSI/IEEE 754 standard) is coded in 32 bit format which
corresponds to the single decimal point floating numbers.
The 32 bits representing the floating point value are organized in three distinct fields. These are:
 S, the sign bit which can have the value:
 0, for a positive floating point number
 1, for a negative floating point number

 e, the exponential coded in an 8 bit field (integer in binary format)
 f, the fixed-point part coded in a 23 bit field (integer in binary format)
Representation:

The value of the fixed-point part (Mantissa) is between [0, 1[, and is calculated using the following
formula.
206 35006144 10/2019

Data Types
Number Types that Can Be Represented
These are the numbers which are:
 normalized
 denormalized
 of infinite values
 with values +0 and -0
This table gives the values in the different fields according to number type.

NOTE:
Standard IEC 559 defines two classes of NAN (not a number): QNAN and SNAN.
 QNAN: is a NAN whose bit 22 is set to 1
 SNAN: is a NAN whose bit 22 is set to 0

They behave as follows:
 QNAN do not trigger errors when they appear in operands of a function or an expression.
 SNAN trigger an error when they appear in operands of a function or an arithmetic expression

(See %SW17 (see EcoStruxure™ Control Expert, System Bits and Words, Reference Manual)
and %S18 (see EcoStruxure™ Control Expert, System Bits and Words, Reference Manual)).

e f S Number type
]0, 255[[0, 1[0 or 1 normalized
0 [0, 1[near (1.4E-45) denormalized DEN
255 0 0 + infinity (INF)
255 0 1 - infinity (-INF)
255]0,1[and bit 22 = 0 0 or 1 SNAN
255]0,1[and bit 22 = 1 0 or 1 QNAN
0 0 0 +0
0 0 1 -0
35006144 10/2019 207

Data Types
This table gives the calculation formula of the value of the floating-point number:

NOTE: A real number between -1.1754944e-38 and 1.1754944e-38 is a denormalized DEN. When
an operand is a DEN, the result is not guaranteed. The bits %SW17 (see EcoStruxure™ Control
Expert, System Bits and Words, Reference Manual) and %S18 (see EcoStruxure™ Control
Expert, System Bits and Words, Reference Manual) are raised except for the Modicon M340. The
Modicon M340 PLCs are able to use the denormalized operands but, due to the format, with a loss
of precision. Underflow is signaled depending on the operation only when the result is 0 (total
underflow) or when the result is a denormalized (gradual underflow, with loss of precision).

The Real Type
Presentation:

Range of values (grayed out parts):

When a calculation result is:
 between -1.1754944e-38 and 1.1754944e-38, it is a DEN
 less than -3.4028234e+38, the symbol -INF (for -infinite) is displayed
 greater than +3.4028234e+38, the symbol INF (for +infinite) is displayed
 undefined (square root of a negative number), the symbol NAN is displayed

Floating-point number Value
Normalized

Denormalized (DEN)

Type Scale (bits) Default value
REAL 32 0.0
208 35006144 10/2019

Data Types
Examples of inaccuracy on normalized value
7.986 will be coded by the application as:

Using the formula:

The number 7.986 should have a significant of:

As the significant is expressed as an integer, it can only be coded as 8359248 (rounded to the
nearest limit).
No number can be coded between the significant 8359247 and 8359248, or between the real
number 7.985999584197998046875 and 7.98600006103515625
The weight of the less significant bit (gap) is, in absolute precision:

The gap becomes very important for big values as shown below:

NOTE: The gap corresponds to the weight of the less significant bit.

S E=129 M=8359248
0 1000001 11111111000110101010000

Value M=8359248

100 000 000 Between 226 and 227

2127 2127
35006144 10/2019 209

Data Types
In order to get an expected resolution, it is necessary to define the maximum range for the
calculation according the following formula:

p being the accuracy and e the exponent (e = E-127)

For instance, if the accuracy needs to be = 0.001, the fixed-point part will be:

with:

Beyond of this limit F, the accuracy will be lost.

Typical case: Counters
Floating must be used carefully, especially when it needs to add a small number to itself.
In case of small increments, the counter won't count properly, giving wrong results and stopping to
rise when the increment will be lower than the less significant bit of the counter.
To get correct values, it is recommended to count on an double integer (UDINT) and multiply the
result by the increment.
Example:
 Increment a value by 0.001 from 33000 to 1000000,
 Count from 33000000 to 1000000000 (value times 1000) with 1 as increment,
 Get the result multiplying the value by 0.001.
The accuracy F minimum per range will be:

This counter can raise up to 4294967295 x 0.001 = 4294967.5 with a minimum accuracy of 0.5
NOTE: The real value here are the binary value encoded. It may differs from the display in an
operator screen as rounding is done (4.294968e+006)

From...to... F (minimum)
3300...65536 0.004
65536...131072 0.008
... ...
524288...1000000 0.063
210 35006144 10/2019

Data Types
Elementary Data Types (EDT) in Character String Format

Section 7.4
Elementary Data Types (EDT) in Character String Format

Overview of Data Types in Character String Format

Introduction
Data types in character string format belong to the EDT (Elementary data type) family, which
includes single rather than derived data types (tables, structures, function blocks).

The Character String Type
The character string format is used to represent a string of ASCII characters, with each character
being coded in an 8 bit format.
The characteristics of character string types are as follows:
 16 characters by default in a string (excluding end of string characters)
 a string is composed of ASCII characters between 16#20 and 16#FF (hexadecimal

representation)
 in an empty string, the end of string character (code ASCII "ZERO") is the first character of the

string
 the maximum size of a string is 65535 characters
The size of the character string can be optimized during the definition of the type using the
STRING[<size>] command, <size> being an unsigned integer UINT capable of defining a string of
between 1 and 65535 ASCII characters.
NOTE: The ASCII characters 0-127 are common to all languages, but the characters 128-255 are
language dependent. Be careful if the language of the Control Expert is not the same as the OS
language. If the two languages are not the same, CHAR MODE communication can be disturbed
and sending characters greater than 127 cannot be guaranteed to be correct. In particular, if the
“Stop on Reception” character is greater than 127, it is not taken into account.
35006144 10/2019 211

Data Types
Syntax Rules
The entry is preceded by and ends with the quote character "’" (ASCII code 16#27).
The $ (dollar) sign is a special character, followed by certain letters which indicate:
 $L or $l, go to the next line (line feed)
 $N or $n, go to the start of the next line (new line)
 $P or $p, go to the next page
 $R or $r, carriage return
 $T or $t tabulation (Tab)
 $$, represents the character $ in a string
 $’, represents the quote character in a string
The user can use the syntax $nn to display, in a STRING variable, caracters which must not be
printed. It can be a carriage return (ASCII code 16#0D) for instance.

Examples
Entry examples:

Type Entry Contents of the string
• represents the end of string character
* represents empty bytes

STRING ‘ABCD’ ABCD•************ (16 characters)
STRING[4] ‘john’ john•
STRING[10] ‘It$’s john’ It’s john•*
STRING[5] ’’ •*****
STRING[5] ’$’’ ’•****
STRING[5] ‘the number’ the no•
STRING[13] ’0123456789’ 0123456789•***
STRING[5] ‘RL’ <cr><lf>•***
STRING[5] ’$$1.00’ $1.00•
212 35006144 10/2019

Data Types
STRING Type Variable Declaration
A STRING type variable can be declared in two different ways:
 STRING and
 STRING[<Number of elements>]
Behavior differs depending on usage:

Strings and the ANY Pin
When you use a STRING type variable as an ANY type parameter, it is highly recommended to
check that the size of the variable is less than the maximum declared size.
Example:
Use of STRING on the SEL function (Selector).
String1: STRING[8]
String2: STRING[4]
String3: STRING[4]

String1:= 'AAAAAAAA';
String3:= 'CC';
Scenario 1:
String2:= 'BBBB';
(* the size of the string is equal to the maximum declared size *)
String1:= SEL(FALSE, String2, String3);
(* the result will be: 'BBBBAAAA' *)
Scenario 2:
String2:= 'BBB';
(* the size of the string is less than the maximum declared size *)
String1:= SEL(FALSE, String2, String3);
(* the result will be: 'BBB' *)

Type Variable
declaration

FFB input parameter EF output parameter FB output
parameter

STRING Fixed size:
16 characters

The size is equal to the actual
size of the input parameter.

The size is equal to the actual
size of the input parameter.

Fixed size of
16 characters

STRING[<n>] Fixed size:
n characters

The size is equal to the actual
size of the input parameter
limited to n characters.

The EF writes a maximum of
n characters.

The FB writes a
maximum of
n characters.
35006144 10/2019 213

Data Types
Elementary Data Types (EDT) in Bit String Format

Section 7.5
Elementary Data Types (EDT) in Bit String Format

Subject of this Section
This section describes data types in bit string format. These are:
 Byte type
 Word type
 Dword type

What Is in This Section?
This section contains the following topics:

Topic Page
Overview of Data Types in Bit String Format 215
Bit String Types 216
214 35006144 10/2019

Data Types
Overview of Data Types in Bit String Format

Introduction
Data types in bit string format belong to the EDT (Elementary data type) family, which includes
single rather than derived data types (tables, structure, function blocks).

Reminder Concerning Bit String Format
The particularity of this format is that all of its component bits do not represent a numerical value,
but a combination of separate bits.
The data belonging to types of this format can be represented in three bases. These are:
 hexadecimal (16#)
 octal (8#)
 binary (2#)

Data Types in Bit String Format
Three data types:

Type Scale (bits) Default value
BYTE 8 0
WORD 16 0
DWORD 32 0
35006144 10/2019 215

Data Types
Bit String Types

The Byte Type
The Byte type is coded in 8 bit format.
This table shows the lower/upper limits of the bases which can be used.

Representation examples:

The Word Type
The Word type is coded in 16 bit format.
This table shows the lower/upper limits of the bases which can be used.

Representation examples:

Base Lower limit Upper limit
Hexadecimal 16#0 16#FF
Octal 8#0 8#377
Binary 2#0 2#11111111

Data content Representation in one of the bases
00001000 16#8
00110011 8#63
00110011 2#110011

Base Lower limit Upper limit
Hexadecimal 16#0 16#FFFF
Octal 8#0 8#177777
Binary 2#0 2#1111111111111111

Data content Representation in one of the bases
0000000011010011 16#D3
1010101010101010 8#125252
0000000011010011 2#11010011
216 35006144 10/2019

Data Types
the Dword Type
The Dword type is coded in 32 bit format.
This table shows the lower/upper limits of the bases which can be used.

Representation examples:

Base Lower limit Upper limit
Hexadecimal 16#0 16#FFFFFFFF
Octal 8#0 8#37777777777
Binary 2#0 2#11111111111111111111111111111111

Data content Representation in one of the bases
00000000000010101101110011011110 16#ADCDE
00000000000000010000000000000000 8#200000
00000000000010101011110011011110 2#10101011110011011110
35006144 10/2019 217

Data Types
Derived Data Types (DDT/IODDT/Device DDT)

Section 7.6
Derived Data Types (DDT/IODDT/Device DDT)

Subject of this Section

This section presents Derived Data Types. These are:
 tables (DDT)
 structures
 structures concerning input/output data (IODDT)
 structures concerning other data (DDT)
 structures concerning input/output data.

What Is in This Section?
This section contains the following topics:

Topic Page
Arrays 219
Structures 222
Overview of the Derived Data Type family (DDT) 223
DDT: Mapping Rules 225
Overview of Input/Output Derived Data Types (IODDT) 229
Overview of Device Derived Data Types (Device DDT) 231
Device DDT Instance Naming Rule 232
218 35006144 10/2019

Data Types
Arrays

What Is an Array?
It is a data item that contains a set of data of the same type, such as:
 elementary data (EDT),

for example:
 a group of BOOL words,
 a group of UINT integer words,
 etc.

 derived data (DDT),
for example:
 a group of WORD tables,
 a group of structures,
 Device derived data (Device DDT)
 etc.

Characteristics
An array is characterized by two parameters:
 a parameter which defines its organization (array dimension(s)),
 a parameter that defines the type of data it contains.
NOTE: The most complex organization is the array with 15 dimensions and the array size could
not be greater than 65535 bytes.
The syntax comprising these two parameters is:
35006144 10/2019 219

Data Types
Defining and Instancing an Array
Definition of an array type:

Instancing an array

The instances Tab_1 and Tab_2 are of the same type and the same dimension, the only difference
being that during instancing:
 the Tab_1 type takes the name X,
 the Tab_2 type must be defined (unnamed table).
NOTE: It is beneficial to name the type, as any modification that has to be made will only be done
so once, otherwise there will be as many modifications as there are instances.

Examples
This table presents the instances of arrays of different dimensions:

NOTE: Many functions (READ_VAR, WRITE_VAR for example) don’t recognize the index of an
array of words starting by a number different from 0. If you use such an index the functions will look
at the number of words in the array, but not at the starting index set in the definition of the array.

Entry Comments
Tab_1: ARRAY[1..2] OF BOOL 1 dimensional array with 2 Boolean words
Tab_2: ARRAY[-10..20] OF WORD 1 dimensional array with 31 WORD type

structures (structure defined by the user)
Tab_3: ARRAY[1..10, 1..20] OF INT 2 dimensional arrays with 10x20 integers
Tab_4: ARRAY[0..2, -1..1, 201..300, 0..1] OF
REAL

4 dimensional arrays with 3x3x100x2 reals

WARNING
UNEXPECTED APPLICATION BEHAVIOR - INVALID ARRAY INDEX
When applying functions on variables of array type, check that the functions are compatible with
the arrays starting index value when this value is greater than 0.
Failure to follow these instructions can result in death, serious injury, or equipment damage.
220 35006144 10/2019

Data Types
Access to a data item in array Tab_1 and Tab_3:

Inter-Arrays Assignment Rules
There are the 4 following arrays:
35006144 10/2019 221

Data Types
Structures

What is a Structure?
It is a data item containing a set of data of a different type, such as:
 a group of BOOL, WORD, UNINT, etc. , (EDT structure),
 a group of tables (DDT structure),
 a group of REAL, DWORD, tables, etc., (EDT and DDT structures).
NOTE: You can create nested structures (nested DDTs) over 15 levels. Recurring structures
(DDT) are not allowed.

Characteristics
A structure is composed of data which are each characterized by:
 a type,
 a name, which enables it to be identified,
 a comment (optional) describing its role.
Definition of a structure type:

Definition of two data instances of an IDENT type structure:

Access to the Data of a Structure
Access to the data of the Person_1 IDENT-type instance:
222 35006144 10/2019

Data Types
Overview of the Derived Data Type family (DDT)

Introduction
The DDT (Derived Data Type) family includes "derived" data types such as:
 tables
 structures
Illustration:

Characteristics
A data item belonging to the DDT family is made up of:
 the type name (32 characters maximum) defined by the user (not obligatory for tables but

recommended) (see page 220)
 the type (structure or table)
 an optional comment (of a maximum of 1024 characters). Authorized characters correspond to

the ASCII codes 32 to 255
 the description (in the case of a structure) of these elements
 the element name (32 characters maximum)
 the element type
 an optional comment (1024 characters maximum) describing its role. The authorized

characters correspond to the ASCII codes 32 to 255
 information such as:
 type version number
 date of the last modification of the code or of the internal variables or of the interface variables
 an optional descriptive file (32767 characters) describing the block function and its different

modifications
NOTE: The total size of a table does not exceed 64 Kbytes.
35006144 10/2019 223

Data Types
Examples
Definition of types

Access to the data of a DRAW-type structure instance
224 35006144 10/2019

Data Types
DDT: Mapping Rules

At a Glance
The DDTs are stored in the memory of the PLC in the order in which its elements are declared.
However, the following rules apply.

Principle for Premium and Quantum
The storage principle for Premium and Quantum is as follows:
 the elements are stored in the order in which they are declared in the structure,
 the basic element is the byte (alignment of data on the memory bytes),
 each element has an alignment rule:
 the BOOL and BYTE types are indiscriminately aligned on the odd or even bytes,
 all the other elementary types are aligned on the even bytes,
 the structures and tables are aligned according to the alignment rule for the BOOL and BYTE

types if they only contain BOOL and BYTE elements, otherwise they are aligned on the
memory's even bytes.

WARNING
RISK OF INCOMPATIBILITY AFTER CONCEPT CONVERSION
With the Concept programming application, the data structures do not handle any shift in offsets
(each element is set one after the other in the memory, regardless of its type). Consequently, we
recommend that you check everything, in particular the consistency of the data when using DDTs
located on the "State RAM" (risk of shifts) or functions for communication with other devices
(transfers with a different size from those programmed in Concept).
Failure to follow these instructions can result in death, serious injury, or equipment damage.
35006144 10/2019 225

Data Types
Principle for Modicon M340, M580, and Momentum
The storage principle for these PLCs is as follows:
 elements are stored in the order in which they are declared in the structure,
 the basic element is the byte,
 one alignment rule and function of the element:
 the BOOL and BYTE types are aligned on either even or uneven bytes,
 the INT, WORD and UINT types are aligned on even bytes,
 the DINT, UDINT, REAL, TIME, DATE, TOD, DT and DWORD are aligned on double words,
 structures and tables are aligned according to the rules of their elements.

NOTE: It is possible that the alignment of data are not the same when the project is transferred
from the simulator of Control Expert to a M340, M580, or Momentum PLC. So check the structure
of the data of the project.
NOTE: Control Expert indicates where the alignment seems to be different. Check the
corresponding instances in the data editor. See the page of Project settings (see EcoStruxure™
Control Expert, Operating Modes) to know how enable this option.

Modicon M580 Device DDT Alignment for I/O Scanning
Two modes of I/O scanning are proposed:
 Legacy I/O scanning mode (used in Unity Pro ≤ V11.1) creates Device DDT structures aligned

on 32 bits by default.
 Enhanced I/O scanning mode (compatible for applications created with Unity Pro ≥ V12.0)

creates Device DDT structures aligned on 16 bits by default.
NOTE: Unity Pro is the former name of Control Expert for version 13.1 or earlier.
To keep the original alignment for applications created for Unity Pro ≤ V11.1, select the legacy I/O
scanning mode.

WARNING
BAD EXCHANGES BETWEEN A MODICON M340, M580, Momentum AND A PREMIUM OR
QUANTUM.
Check if the structure of the exchanged data have the same alignments in the two projects.
Otherwise, the data will not be exchanged properly.
Failure to follow these instructions can result in death, serious injury, or equipment damage.
226 35006144 10/2019

Data Types
Alignment mismatch illustration for Modbus TCP device:
 Example of arrangement in legacy mode (32 bits alignment, array of 4 x BYTE). When 3 INT are

transmitted, the structure in legacy mode creates 2 empty bytes that need to be considered in
the global structure interpretation.

 Example of arrangement in enhanced mode (16 bits alignment, array of INT). When 3 INT are
transmitted, no empty bytes are added by the system, all the data in the structure are useful.

Examples
The following table gives some examples of data structures. In the following examples, structure
type DDTs are addressed to %MWi. The word’s first byte corresponds to the least significant 8 bits
and the word’s second byte corresponds to the most significant 8 bits.
For all the following structures, the first variable is mapped to the address %MW100:

First Memory Address Description of the structure
Modicon M340, M580
or Momentum

Premium Para_PWM1

%MW100 (first byte) %MW100 (first byte) t_period: TIME

%MW102 (first byte) %MW102 (first byte) t_min: TIME

%MW104 (first byte) %MW104 (first byte) in_max: REAL

Mode_TOTALIZER
%MW100 (first byte) %MW100 (first byte) hold: BOOL

%MW100 (second byte) %MW100 (second byte) rst: BOOL
35006144 10/2019 227

Data Types
The table below gives two examples of data structures with arrays:

Info_TOTALIZER
%MW100 (first byte) %MW100 (first byte) outc: REAL

%MW102 (first byte) %MW102 (first byte) cter: UINT

%MW103 (first byte) %MW103 (first byte) done: BOOL

%MW103 (second byte) %MW103 (second byte) Reserved for the alignment

First Memory Address Description of the structure
Modicon M340, M580
or Momentum

Premium EHC105_Out

%MW100 (first byte) %MW100 (first byte) Quit: BYTE

%MW100 (second byte) %MW100 (second byte) Control: ARRAY [1..5] OF BYTE

%MW104 (first byte) %MW103 (first byte) Final: ARRAY [1..5] OF DINT

CPCfg_ex
%MW100 (first byte) %MW100 (first byte) Profile_type: INT

%MW101 (first byte) %MW101 (first byte) Interp_type: INT

%MW102 (first byte) %MW102 (first byte) Nb_of_coords: INT

%MW103 (first byte) %MW103 (first byte) Nb_of_points: INT

%MW104 (first byte) %MW104 (first byte) reserved: ARRAY [0..4] OF BYTE

%MW106 (second byte) %MW106 (second byte) Reserved for the alignment of variable
Master_offset on even bytes

%MW108 (first byte) %MW107 (first byte) Master_offset: DINT

%MW110 (first byte) %MW109 (first byte) Follower_offset: INT

%MW111 (entire word) - Reserved for the alignment

First Memory Address Description of the structure
228 35006144 10/2019

Data Types
Overview of Input/Output Derived Data Types (IODDT)

At a Glance
The IODDTs (Input Output Derived Data Types) are predefined by the manufacturer, and contain
language objects of the EDT family belonging to the channel of an application-specific module.
Illustration:

The IODDT types are structures whose size (the number of elements of which they are composed)
depends on the channel or the input\output module that they represent.
A given input\output module can have more than one IODDT.
The difference with a conventional structure is that:
 the IODDT structure is predefined by the manufacturer
 The elements comprising the IODDT structure do not have a contiguous memory allocation, but

rather a specific address in the module
35006144 10/2019 229

Data Types
Examples
IODDT structure for an input\output channel of an analog module

Access to the data of an instance of the ANA_IN_GEN type:

Access by direct addressing:
230 35006144 10/2019

Data Types
Overview of Device Derived Data Types (Device DDT)

At a Glance
A Device DDT is a DDT predefined by the manufacturer and not modifiable by user. It contains the
I/O language elements of an I/O Module.
Illustration:

Device DDT structures like DDT structures can contain:
 EDT
 DDT
 Array of EDT and DDT
The DDT types are structures whose size (the number of elements of which they are composed)
depends on the channel or the input\output module that they represent.
In the current implementation, an I/O Module supports only one Device DDT type.
The difference with a conventional structure is that:
 the DDT structure is predefined by the manufacturer
 the DDT structure supports EBOOL
 the DDT structure supports type with extracted bits
35006144 10/2019 231

Data Types
Device DDT Instance Naming Rule

Modules Concerned by Default Naming Rule
The following table presents the main categories of modules concerned by the device DDT
instance naming rule:

Architecture Modicon M580 Modicon Quantum
Position Family
Local Drop X80 Analog I/O: most modules –

Discrete I/O: most modules
Counting: most modules
Communication:
 BMXEIA0100
 BMXNOM0200
 BMECXM0100 and slaves

attached
Modicon
Quantum

– Communication:
 140CRP31200

Ethernet I/O Drop X80 BM•CRA312•• adapter module BM•CRA312•• adapter module
Analog I/O: most modules Analog I/O: most modules
Discrete I/O: most modules Discrete I/O: most modules
Counting: most modules Counting: most modules
Communication:
 BMXEIA0100
 BMXNOM0200
 BMECXM0100 and slaves

attached

Communication:
 BMXEIA0100
 BMXNOM0200
 BMECXM0100 and slaves

attached
Modicon
Quantum

The drop The drop
Analog I/O: most modules –
Discrete I/O: most modules
Counting: No
Communication: No
232 35006144 10/2019

Data Types
Default Naming Rule
The syntax is based on topological naming and is built as follows:
BBBx_dx_rx_sx_PPPPPPP_SSS
 BBBx: Bus name and bus number.
 BBB = Bus name represented by the 3 first characters of the bus name displayed in the

Control Expert project browser.
 x = Bus number

 dx: Drop number.
 d = d
 x = Drop number. Number equals 0 for a virtual drop.

 rx: Rack number.
 r = r
 x = Rack number. Number equals 0 for a virtual rack, optional for CANopen devices.

 sx: Slot number.
 s = s
 x = Slot number. Optional for CANopen devices.

 PPPPPPP: Device part number. Part number without space as it is displayed on the device
representation in Control Expert.

 SSS: Name of a subset it the device DDT is linked to a subset. These characters are optional.
NOTE: If a name is not unique, _rrrrr is added at the end of the string (rrrrr being a random
character series).
35006144 10/2019 233

Data Types
Examples
Device DDT instance name examples in a Modicon M580 application (M580 CPU):
 Modicon M580 local drop 0, rack 0, slot 2 located on PLC bus number 0. BMXDAI0805 module.

PLC0_d0_r0_s2_DAI0805
 X80 Ethernet I/O drop 1, rack 0, slot 0 located on EIO bus number 2. BMXCRA31200 module.

EIO2_d1_r0_s0_CRA31200
 Modicon Quantum Ethernet I/O drop 2, rack 1 located on EIO bus number 2. Modicon Quantum

drop with a 140CRA31200 adapter module.
EIO2_d2_DROP
NOTE: In this case, the rack and slot numbers are omitted.

Device DDT instance name examples in a Modicon Quantum application (Quantum CPU):
 Modicon Quantum local drop 1, rack 1, slot 4 located on Local Bus number 2. 140CRP31200

adapter module to address Ethernet I/O drops.
LOC1_d1_r1_s4_CRP31200

 X80 Ethernet I/O drop 1, rack 0, slot 0 located on EIO bus number 2. BMECRA31210 module.
EIO2_d1_ECRA31210
NOTE: In this case, the rack and slot numbers are omitted as for a Quantum Ethernet I/O drop
adapter.

 X80 Ethernet I/O drop 1, rack 0, slot 1 located on EIO bus number 2. BMXDAI0805 module.
EIO2_d1_r0_s1_DAI0805

 Modicon Quantum Ethernet I/O drop 2, rack 1 located on EIO bus number 2. Modicon Quantum
drop with a 140CRA31200 adapter module.
EIO2_d2_DROP
NOTE: In this case, the rack and slot numbers are omitted.

Renaming a Device DDT, Copying, Pasting and Moving a Module
Actions on Device DDT instances and modules with an associated device DDT are detailed in the
following section: Managing a Device DDT instance (see EcoStruxure™ Control Expert, Operating
Modes).
234 35006144 10/2019

Data Types
Function Block Data Types (DFB\EFB)

Section 7.7
Function Block Data Types (DFB\EFB)

Subject of this Section
This section describes function block data types. These are:
 user function blocks (DFB)
 elementary function blocks (EFB)

What Is in This Section?
This section contains the following topics:

Topic Page
Overview of Function Block Data Type Families 236
Characteristics of Function Block Data Types (EFB\DFB) 238
Characteristics of Elements Belonging to Function Blocks 240
35006144 10/2019 235

Data Types
Overview of Function Block Data Type Families

Introduction
Function block data type families are:
 the Elementary Function Block (EFB) (see page 181) type family
 the User function block (DFB) (see page 181) type family
Illustration:

Function blocks are entities containing:
 input and output variables acting as an interface with the application
 a processing algorithm that operates input variables and completes the output variables
 private and public internal variables operated by the processing algorithm

Illustration
Function block:
236 35006144 10/2019

Data Types
User Function Block (DFB)
The user function block types (Derived Function Blocks) are developed by the user using one or
more languages (according to the number of sections). These languages are:
 Ladder language
 Structured Text language
 Instruction List language
 Functional block language FBD
A DFB type can have one or more instances where each instance is referenced by a name
(symbol) and possesses DFB data types.

Elementary Function Block (EFB)
 Elementary Function Blocks (EFBs) are provided by the manufacturer and are programmed in C
language.
The user can create his own EFB for which he will need an optional software tool "SDKC".
An EFB type can have one or more instances where each instance is referenced by a name
(symbol) and possesses EFB type data.
35006144 10/2019 237

Data Types
Characteristics of Function Block Data Types (EFB\DFB)

Type Definition
The type of an EFB or DFB function block is defined by:
 the type name, defined by the user for the DFBs,
 an optional comment. The authorized characters correspond to the ASCII codes 32 to 255,
 the application interface data:
 the inputs, not accessible in read\write mode from the application, but read by the function

block code,
 the inputs\outputs, not accessible in read\write mode from the application, but read and

written by the function block code,
 the outputs, accessible in read only from the application and read and written by the function

block code.
 the internal data:
 public internal data, accessible in read\write mode from the application, and read and written

by the function block code,
 private internal data, not accessible from the application, but read and written by the function

block code.
 the code:
 for DFBs, this is written by the user in PLC language (Structured Text, Instruction List, Ladder

language, function block language), and is structured in a single section or in several
sections,

 for EFBs, this is written in C language.
 information such as:
 type version number,
 date of the last modification of the code, or of the internal variables, or of the interface

variables.
 an optional descriptive file (32767 characters), describing the block function and its different

modifications.
238 35006144 10/2019

Data Types
Characteristics
This table gives the characteristics of the elements that make up a type:

(1): the only limit is the size of the PLC's memory.
(2): the EN input and ENO output are not taken into account.

Element EFB DFB
Name 32 characters 32 characters
Comment 1024 characters 1024 characters
Input Data 32 maximum 32 maximum
Input/Output data 32 maximum 32 maximum
Output data 32 maximum 32 maximum
Number of interfaces
(Inputs+Outputs+Inputs/Outputs)

32 maximum (2) 32 maximum (2)

Public data No limits (1) No limits (1)
Private data No limits (1) No limits (1)
Programming language C language Language:

 Structured Text,
 Instruction List,
 Ladder language,
 function block.

Section A section is defined by:
 a name (maximum 32 characters),
 a validation condition,
 a comment (maximum 256 characters),
 a protection:
 without,
 read only,
 read\write mode.

A section cannot access declared variables in the
application, except for:
 system double words %SDi,
 system words %SWi,
 system bits %Si.
35006144 10/2019 239

Data Types
Characteristics of Elements Belonging to Function Blocks

What is an element?
Each element (interface data or internal data) is defined by:
 a name (maximum 32 characters), defined by the user,
 a type,

which can belong to the following families:
 Elementary Data Types (EDT),
 Derived Data Type (DDT),
 Device Derived Data Type (Device DDT)
 Function Block data types (EFB\DFB).

 an optional comment (maximum 1024 characters). The authorized characters correspond to the
ASCII codes 32 to 255,

 an initial value,
 an access right from the application program (sections of the application or section belonging to

the DFBs see "Definition of the function block type (interface and internal variables)"
(see page 238),

 an access right from communication requests,
 a public variables backup flag.

Authorized Data Types for an Element Belonging to a DFB
The authorized data types are:

(1): not authorized for the EBOOL type static data used on Quantum PLCs
(2): not authorized for BOOL and EBOOL type data
(3): must be completed during the execution of the DFB, and not usable outside the DFB

Element of the
DFB

EDT
types

DDT types ANY... Function block
types

IODDT Unnamed
tables

ANY_ARRAY other

Input data Yes No Yes Yes Yes Yes (2) No
Input/output data Yes (1) Yes Yes Yes Yes Yes (2) No
Output data Yes No Yes No Yes Yes (2) (3) No
Public data Yes No Yes No Yes No No
Private data Yes No Yes No Yes No Yes
240 35006144 10/2019

Data Types
Authorized Data Types for an Element Belonging to an EFB
The authorized data types are:

(1): not authorized for BOOL and EBOOL type data
(2): must be completed during the execution of the EFB, and not usable outside the EFB

Initial Values for an Element Belonging to a DFB
This table specifies whether the initial values can be entered from the DFB type definition or the
DFB instance:

Element of the EFB EDT
types

DDT types ANY... Function
block types

IODDT Unnamed
tables

ANY_ARRAY other

Input data Yes No No Yes Yes Yes (1) No
Input/output data Yes Yes No Yes Yes Yes (1) No
Output data Yes No No No Yes Yes (1) (2) No
Public data Yes No No No Yes No No
Private data Yes No No No Yes No Yes

Element of the DFB From the DFB type From the DFB instance
Input data (no ANY... type) Yes Yes
Input data (of ANY... type) No No
Input/output data No No
Output data (no ANY... type) Yes Yes
Output data (of ANY... type) No No
Public data Yes Yes
Private data Yes No
35006144 10/2019 241

Data Types
Initial Values for an Element Belonging to an EFB
This table specifies whether the initial values can be entered from the EFB type definition or the
EFB instance:

Element of the EFB From the EFB type From the DFB instance
Input data (no ANY... type
See generic data types
(see page 243))

Yes Yes

Input data (of ANY... type) No No
Input/output data No No
Output data (no ANY... type) Yes Yes
Output data (of ANY... type) No No
Public data Yes Yes
Private data Yes No

WARNING
UNEXPECTED APPLICATION BEHAVIOR - INVALID ARRAY INDEX
When using EFBs and DFBs on variables of array type, only use arrays with starting index=0.
Failure to follow these instructions can result in death, serious injury, or equipment damage.
242 35006144 10/2019

Data Types
Generic Data Types (GDT)

Section 7.8
Generic Data Types (GDT)

Overview of Generic Data Types

At a Glance
Generic Data Types are conventional groups of data types (EDT, DDT) specifically intended to
determine compatibility among these conventional groups of data types.
These groups are identified by the prefix ‘ANY_ARRAY’, but these prefixes can under no
circumstances be used to instance the data.
Their field of use concerns function block (EFB\DFB) and elementary function (EF) data type
families, in order to define which data types are compatible with their interfaces for the following :
 inputs
 input/outputs
 outputs

Available Generic Data Types
The generic data types available in Control Expert are the following types:
 ANY_ARRAY_WORD
 ANY_ARRAY_UINT
 ANY_ARRAY_UDINT
 ANY_ARRAY_TOD
 ANY_ARRAY_TIME
 ANY_ARRAY_STRING
 ANY_ARRAY_REAL
 ANY_ARRAY_INT
 ANY_ARRAY_EBOOL
 ANY_ARRAY_DWORD
 ANY_ARRAY_DT
 ANY_ARRAY_DINT
 ANY_ARRAY_DATE
 ANY_ARRAY_BYTE
 ANY_ARRAY_BOOL
35006144 10/2019 243

Data Types
Example
This gives us the following DFB:

NOTE: The authorized objects for the various parameters are defined in this table (see page 523).
244 35006144 10/2019

Data Types
Data Types Belonging to Sequential Function Charts (SFC)

Section 7.9
Data Types Belonging to Sequential Function Charts (SFC)

Overview of the Data Types of the Sequential Function Chart Family

Introduction
The Sequential Function Chart (SFC) data type family includes derived data types, such as the
structures that restore the properties and status of the chart and its component actions.
Each step is represented by two structures. These are:
 the SFCSTEP_STATE structure
 the SFCSTEP_TIMES structure
Illustration:

NOTE: The two structure types SFCSTEP_STATE and SFCSTEP_TIMES are also linked to each
Macro step of the sequential function chart.
35006144 10/2019 245

Data Types
Definition of the SFCSTEP_STATE Structure Type
This structure includes all types of data linked to the status of the step or of the Macro step.
These data types are:
 x: BOOL elementary data type (EDT) containing the value TRUE when the step is active,
 t: TIME elementary data type (EDT) containing the activity time of the step. When deactivated,

the step value is maintained until the next activation,
 tminErr: BOOL elementary data type (EDT) containing the value TRUE if the activity time of the

step is less than the minimum programmed activity time,
 tmaxErr: BOOL elementary data type (EDT) containing the value TRUE if the activity time of the

step is greater than the maximum programmed activity time,
These data types are accessible from the application in read only mode.

Definition of the SFCSTEP_TIMES Structure Type
This structure includes all types of data linked to the definition of the runtime parameters of the step
or of the Macro step.
These data types are:
 delay: TIME elementary data type (EDT), defining the polling delay time of the transition situated

downstream from the active step,
 tmin: TIME elementary data type (EDT) containing the minimum value during which the step

must at least be executed. If this value is not respected the data tmin.Err switches to the value
TRUE,

 tmax: TIME elementary data type (EDT) containing the maximum value during which the step
must at least be executed. If this value is not respected the data tmax.Err switches to the value
TRUE.

These data types are only accessible from the SFC editor.

Data Access Syntax of the Structure SFCSTEP_STATE
The instance names of this structure correspond to the names of the steps or macro steps of the
sequential function chart

Syntax Comment
Name_Step.x Used to find out the status of the step (active\inactive)
Name_Step.t Used to find out the current or total activation time for the step
Name_Step.tminErr Used to find out if the minimum activation time of the step is less than the time

programmed in Name_Step.tmin
Name_Step.tmaxErr Used to find out if the maximum activation time of the step is greater than the time

programmed in Name_Step.tmax
246 35006144 10/2019

Data Types
Compatibility Between Data Types

Section 7.10
Compatibility Between Data Types

Compatibility Between Data Types

Introduction
The following is a presentation of the different rules of compatibility between types within each of
the following families:
 the Elementary Data Type (EDT) family
 the Derived Data Type (DDT) family
 the Generic Data Type (GDT) family

The Elementary Data Type (EDT) Family
The Elementary Data Type (EDT) family contains the following sub-families:
 the binary format data type sub-family
 the BCD format data type sub-family
 the Real format data type sub-family
 the character string format data type sub-family
 the bit string format data type sub-family
There is no compatibility whatsoever between two data types, even if they belong to the same sub-
family.
35006144 10/2019 247

Data Types
Derived Data Type (DDT) Family
The Derived Data Type (DDT) family contains the following sub-families:
 the table type sub-family
 the structure type sub-family:
 structures concerning input/output data (IODDT)
 structures concerning input/output device (Device DDT)
 structures concerning other data

Rules concerning the structures:
Two structures are compatible if their elements are:
 of the same name
 of the same type
 organized in the same order
There are four types of structure:

Compatibility between the structure types

Types ELEMENT_1 ELEMENT_2 ELEMENT_3 ELEMENT_4
ELEMENT_1 YES NO NO
ELEMENT_2 YES NO NO
ELEMENT_3 NO NO NO
ELEMENT_4 NO NO NO
248 35006144 10/2019

Data Types
Rules concerning the tables
Two tables are compatible if:
 their dimensions and the order of their dimensions are identical
 each corresponding dimension is of the same type
There are five types of table:

Compatibility between the table types:

Type... and type... are...
TAB_1 TAB_2 incompatible
TAB_2 TAB_3 compatible
TAB_4 TAB_5 compatible
TAB_4[25] TAB_5[28] compatible
35006144 10/2019 249

Data Types
The Generic Data Type (GDT) Family
The Generic Data Type (GDT) family is made up of groups organized hierarchically which contain
data types belonging to the following families:
 Elementary Data Types (EDT)
 Derived Data Types (DDT)
Rules:
A conventional data type is compatible with the genetic data types related to it hierarchically.
A generic data type is compatible with the generic data types related to it hierarchically.
Example:
250 35006144 10/2019

Data Types
Reference Data Type Declarations

Section 7.11
Reference Data Type Declarations

Reference Data Type Declarations

Introduction
The Reference data type allows mapping of different types of data in a DDT.
A reference contains the memory address of a variable.

References are declared using the keyword REF_TO followed by the type of the referenced value
(for example: myRefInt: REF_TO INT).

A reference can be assigned to another reference if it points to the same or compatible data type
(for example, myRefINT1:= myRefINT2).

References can be assigned to parameters of functions.
Summary of Control Expert reference operations:

A reference can be dereferenced using a postfix “^” (caret), but dereferencing a NULL reference
produces a detected error.

NOTICE
UNEXPECTED APPLICATION BEHAVIOR
Take specific care during your application testing to verify correct usage of references in your
program.
Failure to follow these instructions can result in equipment damage.

Operation Description Example
Declaration Declaration of a variable to be a reference myRefInt of type REF_TO INT
Assignment Assigns reference to reference (same type) myRefINT1:= myRefINT2;

Assigns reference to parameter of a
function

myFB (r := myRef);

Comparison with NULL IF myRef = NULL THEN …
Referencing Assigns address of a variable to a reference myRefA := REF(A);
Dereferencing Provides the value of the variable

referenced to
A := myRefA^;
B := myRefArrayType^[12];
35006144 10/2019 251

Data Types
Reference Limitations
A reference:
 to a reference is not supported
 cannot be explicitly assigned the NULL value
 to an IODDT is not supported because it has no memory allocation; it has no address to

reference
 can only refer to variables of the given reference data type (EDT, DDT, or Device DDT) and can

only be compared to a reference of the same or compatible type
 can only be used with the “:=”, “=” and “<>” operators and the EFs “EQ” and “NE”.
 cannot be a temporary variable, for example, a FBD-link or result value of a nested EF-call
 cannot be used with the SFC and LL984 programming languages
 respects the access rights of the referenced variable by variable attribute R/W Rights of

Referenced Variable
 has to be assigned to an FFB’s reference pin (mandatory parameter)
Declaring a DFB or FFB with an input or output parameter references is allowed, but not an in/out
parameter, which is already a reference.
A dereferenced reference can be used like a variable of the referenced type.
Only 1 level of dereferencing is allowed.
The initial value of a reference cannot be cyclic:
252 35006144 10/2019

Data Types
Possible usages in an application section
We can only reference an application variable to an application variable reference or to a DFB
public variable reference:
 Var_Ref := REF(Var);
 DFB_Instance.public_Var_Ref := REF(Var);
We can only assign an application variable to an application variable or to a DFB public variable:
 Var1_Ref := Var2_Ref;
 DFB_Instance.public_Var_Ref := Var_Ref;

Possible usages in a DFB section
We can only reference an In/Out variable or a private variable, to an Out reference or Public
reference for the In/Out and to a Private reference for a Private variable:
 Out_Var_Ref := REF(In_Out_Var);
 Public_Var_Ref := REF(In_Out_Var);
 Private_Var1 := REF(Private_Var2);
We can only assign an In reference, an out reference, an In/Out reference and a Public reference
to an Out reference or a Public reference. And a Private references can only be assigned to a
Private reference:
 Out_Var_Ref := In_Var_Ref;
 Out_Var_Ref := Out_Var_Ref;
 Out_Var_Ref := In_Out_Var_Ref;
 Out_Var_Ref := Public_Var_Ref;
 Public_Var_Ref := In_Var_Ref;
 Public_Var_Ref := Out_Var_Ref;
 Public_Var_Ref := In_Out_Var_Ref;
 Public_Var_Ref := Public_Var_Ref;
 Private_Var_Ref := Private_Var_Ref;
35006144 10/2019 253

Data Types
Reference access rights
The following attributes can be set to a Reference by the Data Editor:
 RW program: used to set the reference as read only.
 R/W Rights of Referenced Variable: used to specify if the referenced variable is a read-only

variable (the referenced variable is read-only when R/W Rights of Referenced Variable is not
selected).

 Constant: used to prevent modification by program.
NOTE: A reference variable has to respect the R/W attributes of the referenced variable.
This table shows the only available access rights for variables and their referenced variables:

NOTE: In all other cases, Control Expert software raises a detected error, the detected error
message explains how to correct the application.

Reference Variable Assignment example
RW Program RW Rights of

Referenced Variable
Constant RW Program

RO RW Yes RO MyREF^ := Var;
RO RW Yes RW MyREF^ := Var;
RW RO No RO MyREF := REF(Var);
RW RO No RW MyREF := REF(Var);
RW RW No RO MyREF^ := Var;
RW RW No RW MyREF := REF(Var);
RW RW No RW MyREF^ := Var;
254 35006144 10/2019

EcoStruxure™ Control Expert
Data Instances
35006144 10/2019
Data Instances

Chapter 8
Data Instances

What's in this Chapter?
This chapter describes data instances and their characteristics.
These instances can be:
 unlocated data instances
 located data instances
 direct addressing data instances

What Is in This Chapter?
This chapter contains the following topics:

Topic Page
Data Type Instances 256
Data Instance Attributes 260
Direct Addressing Data Instances 263
35006144 10/2019 255

Data Instances
Data Type Instances

Introduction
What is a data type instance? (see page 184)
A data type instance is referenced either by:
 a name (symbol), in which case we say the data is unlocated because its memory allocation is

not defined but is carried out automatically by the system,
 a name (symbol) and a topological address defined by the manufacturer, in which case we say

the data is located since its memory allocation is known,
 a topological address defined by the manufacturer, in which case we say the data is direct

addressing, and its memory allocation is known.

Unlocated Data Instances
Unlocated data instances are managed by the PLC operating system, and their physical location
in the memory is unknown to the user.
Unlocated data instances are defined using data types belonging to one of the following families:
 Elementary Data Types (EDT)
 Derived Data Types (DDT)
 Device Derived Data Type (Device DDT)
 Function Block data types (EFB\DFB)
 Sequential Function Chart data types (SFC)
Examples:

NOTE: Sequential Function Chart (SFC) data type instances are created when they are inserted
in the application program, with a default name that the user can modify.
256 35006144 10/2019

Data Instances
Located Data Instances
Localizing a variable (defined by a symbol) consists in creating an address in the variable editor.
Located data instances have a predefined memory location in the PLC, and this location is known
by the user:
 Topological address for input/output modules
 Global address (M340, Premium) or State RAM (M580, M340, Quantum)
Located data instances are defined using data types belonging to one of the following families:
 Elementary Data Types (EDT)
 Derived Data Types (DDT)
 Input/Output Derived Data Types (IODDT)
The list below shows the datas instances that should be located on a %MW, %KW addresses type:
 INT,
 UINT,
 WORD,
 BYTE,
 DATE,
 DT,
 STRING,
 TIME,
 TOD,
 DDT structure type,
 Table.
EBOOL or EBOOL tables, datas instances have to be located on a %M , %Q or %I addresses type.

IODDT datas instances type have to be located by %CH module channel type.

NOTE: Double-type instances of located data (DINT, DUNIT, DWORD) or floating (REAL) should
be located by %MW, %KW addresses type. Only I/O objects instances type localization is possible
with %MD<i>, %KD<i>, %QD, %ID, %MF<i>, %KF<i>, %QF, %IF type by using their topological address
(for example %MD0.6.0.11, %MF0.6.0.31).
NOTE: For M580 and M340, verify that the index (i) value is even (see page 226) for double-type
instances of located data (%MW and %KW).
35006144 10/2019 257

Data Instances
Examples:

NOTE: Sequential Function Chart (SFC) data type instances are created the moment they are
inserted in the application program, with a default name that the user can modify.
258 35006144 10/2019

Data Instances
Direct Addressing Data Instances
Direct addressing data instances have a predefined location in the PLC memory or in an
application-specific module, and this location is known to the user.
Direct addressing data instances are defined using types belonging to the Elementary Data Type
(EDT) family.
Examples of direct addressing data instances:

NOTE: Located data instances can be used by a direct addressing in the program
Example:
 Var_1: DINT AT %MW10

;%MW10 and %MW11 are both used. %MD10 direct addressing can be used or Var_1 in the
program.

Internal Constant System Input/Output Network
%M<i> %S<i> %Q, %I
%MW<i> %KW<i> %SW<i> %QW, %IW %NW
%MD<i> (1) %KD<i> (1) %QD, %ID
%MF<i> (1) %KF<i> (1) %QF, %IF

Legend:
(1) Not available for Modicon M340
35006144 10/2019 259

Data Instances
Data Instance Attributes

At a Glance
The attributes of a data instance are its defining information.
This information is:
 its name (except for the direct addressing data instances (see page 263))
 its topological address (except for unlocated data type instances)
 its data type, which can belong to one of the following families:
 Elementary Data Type (EDT)
 Derived Data Type (DDT)
 Device derived Data type (Device DDT)
 Function Block data type (EFB\DFB)
 Sequential Function Chart data type (SFC)

 an optional descriptive comment (1024 characters maximum). Authorized characters
correspond to the ASCII codes 32 to 255

Name of a Data Instance
This is a symbol (32 characters maximum) automatically instantiated with a defaut name. This
name can be modified by the user.
Certain names cannot be used, for example:
 key words used in text languages
 names of program sections
 names of data types that are predefined or chosen by the user (structures, tables)
 names of DFB/EFB data types that are predefined or chosen by the user
 names of Elementary Functions (EF) that are predefined or chosen by the user

Names of Instances Belonging to the SFC Family
The names of instances are declared implicitly while the user drafts his sequential function chart.
They are default names supplied by the manufacturer which the user can modify.
Manufacturer-supplied default names:

SFC object Name
Step S_<section name>_<step No.>
Step of Macro step S_<section name>_<macro step No.>_<step No.>
Macro step MS_<section name>_<step No.>
Nested macro step MS_<section name>_<macro step No.>_<step No.>
Input step of Macro step S_IN<section name>_<macro step No.>
Output step of Macro step S_OUT<section name>_<macro step No.>
Transition T_<section name>_<transition No.>
Transition of Macro step T_<section name>_<macro step No.>_<transition No.>
260 35006144 10/2019

Data Instances
Names of Instances Belonging to the Function Block Family
Instance names are implicitly declared while the user inserts the instances into the sections of the
application program. They are default names supplied by the manufacturer which the user may
modify.
Syntax of manufacturer-supplied default names:

NOTE: Instance names do not include the name of the section in which the instance is used, since
it can be used in different sections of the application.

Access to an Element of a DDT Family Instance
The access syntax is as follows:

Rule:
The maximum size of the access syntax is 1024 characters, and the possible limits of a derived
data type are as follows:
 10 nesting levels (tables/structures)
 6 dimensions per table
 4 digits (figures) to define the index of a table element
35006144 10/2019 261

Data Instances
Access to an Element of a Device DDT Family Instance
The access syntax is as follows:

Rule:
The maximum size of the access syntax is 1024 characters, and the possible limits of a derived
data type are as follows:
 10 nesting levels (tables/structures)
 6 dimensions per table
 4 digits (figures) to define the index of a table element
262 35006144 10/2019

Data Instances
Direct Addressing Data Instances

At a Glance
What is a direct addressing data instance? (see page 259)

Access Syntax
The syntax of a direct addressing data instance is defined by the % symbol followed by a memory
location prefix and in certain cases some additional information.
The memory location prefix can be:
 M, for internal variables
 K, for constants (Premium, M580 and M340)
 S, for system variables
 N, for network variables
 I, for input variables
 Q, for output variables

%M Internal Variables
Access syntax:

<i> represents the instance number (starts a 0 for Premium and 1 for Quantum).
For M580 and M340, verify that double-type instance (double word) or floating instance (real) are
located in an integer type %MW and that the index <i> of the %MW is even.
NOTE: The %M<i> or %MX<i> data detect edges and manage forcing.

Syntax Format Example Program access rights
Bit %M<i> or %MX<i> 3 bits (EBOOL) %M1 R/W
Word %MW<i> 16 bits (INT) %MW10 R/W
Word extracted bit %MW<i>.<j> 1 bit (BOOL) %MW15.5 R/W
Double word %MD<i> (1) 32 bits (DINT) %MD8 R/W
Real (floating point) %MF<i> (1) 32 bits (REAL) %MF15 R/W

Legend
(1): Not available for Modicon M340.
35006144 10/2019 263

Data Instances
Memory organization:

NOTE: The modification of %MW<i> involves the corresponding modifications of %MD<i> and
%MF<i>.

%K Constants
Access syntax:

<i> represents the instance number.
NOTE: The memory organization is identical to that of internal variables, which are not available
on Quantum PLCs.

Syntax Format Program access rights
Word constant %KW<i> 16 bits (INT) R
Double word constant %KD<i> (1) 32 bits (DINT) R
Real (floating point) constant %KF<i> (1) 32 bits (REAL) R

Legend
(1): Not available for Modicon M340.
264 35006144 10/2019

Data Instances
%I Constants
Access syntax:

<i> represents the instance number.
NOTE: These data are only available on Quantum and Momentum PLCs.

%S System Variables
Access syntax:

<i> represents the instance number.
NOTE: The memory organization is identical to that of internal variables. The %S<i> and %SX<i>
data are not used for detection of edges and do not manage forcing.

%N Network Variables
These variables contain information, which has to be exchanged between several application
programs across the communication network.
Access syntax:

<n> represents the network number.
<s> represents the station number.
<d> represents the data number.
<j> represents the position of the bit in the word.

Syntax Format Program access rights
Bit constant %I<i> 3 bits (EBOOL) R
Word constant %IW<i> 16 bits (INT) R

Syntax Format Program access rights
Bit %S<i> or %SX<i> 1 bit (BOOL) R/W or R
Word %SW<i> 32 bits (INT) R/W or R

Syntax Format Program access rights
Common word %NW<n>.<s>.<d> 16 bits (INT) R\W or R
Word extracted bit %NW<n>.<s>.<d>.<j> 1 bit (BOOL) R\W or R
35006144 10/2019 265

Data Instances
Case with Input/Output Variables
These variables are contained in the application-specific modules.
Access syntax:

Syntax Example Program access
rights

Input/Output structure (IODDT) %CH<@mod>.<c> %CH4.3.2 R
%I inputs
BOOL type module detected error bit %I<@mod>.MOD.ERR %I4.2.MOD.ERR R
BOOL type channel detected error bit %I<@mod>.<c>.ERR %I4.2.3.ERR R
BOOL or EBOOL type bit %I<@mod>.<c> %I4.2.3 R

%I<@mod>.<c>.<d> %I4.2.3.1 R
INT type word %IW<@mod>.<c> %IW4.2.3 R

%IW<@mod>.<c>.<d> %IW4.2.3.1 R
DINT type double word %ID<@mod>.<c> %ID4.2.3 R

%ID<@mod>.<c>.<d> %ID4.2.3.2 R
Read type REAL (floating point) %IF<@mod>.<c> %IF4.2.3 R

%IF<@mod>.<c>.<d> %IF4.2.3.2 R
%Q outputs
EBOOL type bit %Q<@mod>.<c> %Q4.20.3 R/W

%Q<@mod>.<c>.<d> %Q4.20.30.1 R/W
INT type word %QW<@mod>.<c> %QW4.2.3 R/W

%QW<@mod>.<c>.<d> %QW4.2.3.1 R/W
DINT type double word %QD<@mod>.<c> %QD4.2.3 R/W

%QD<@mod>.<c>.<d> %QD4.2.3.2 R/W
Read type REAL (floating point) %QF<@mod>.<c> %QF4.2.3 R/W

%QF<@mod>.<c>.<d> %QF4.2.3.2 R/W
%M variables (Premium)
INT type word %MW<@mod>.<c> %MW4.2.3 R/W

%MW<@mod>.<c>.<d> %MW4.2.3.1 R/W
DINT type double word %MD<@mod>.<c> %MD4.2.3 R/W

%MD<@mod>.<c>.<d> %MD4.2.3.2 R/W
Read type REAL (floating point) %MF<@mod>.<c> %MF4.2.3 R/W

%MF<@mod>.<c>.<d> %MF4.2.3.2 R/W
266 35006144 10/2019

Data Instances
<@mod = \.<e>\<r>.<m>
 bus number (omitted if station is local).
<e> device connection point number (omitted if station is local, the connection point is also called
Drop for Quantum users).
<r> rack number.
<m> module slot
<c> channel number (0 to 999) or MOD reserved word.
<d> data number (0 to 999) or ERR reserved word (optional if 0 value). For M580 and M340, <d>
is even.

%K Constants (Modicon M580, Modicon M340 and Premium)
INT type word %KW<@mod>.<c> %KW4.2.3 R

%KW<@mod>.<c>.<d> %KW4.2.3.1 R
DINT type double word %KD<@mod>.<c> %KD4.2.3 R

%KD<@mod>.<c>.<d> %KD4.2.3.12 R
Read type REAL (floating point) %KF<@mod>.<c> %KF4.2.3 R

%KF<@mod>.<c>.<d> %KF4.2.3.12 R

Syntax Example Program access
rights
35006144 10/2019 267

Data Instances
Examples: local station and station on bus for Modicon M340 PLCs.
268 35006144 10/2019

Data Instances
Examples: local station and station on bus for Quantum and Premium PLCs.
35006144 10/2019 269

Data Instances
270 35006144 10/2019

EcoStruxure™ Control Expert
Data References
35006144 10/2019
Data References

Chapter 9
Data References

What's in this Chapter?
This chapter provides the references of data instances.
These references can be:
 value-based references,
 name-based references,
 address-based references.

What Is in This Chapter?
This chapter contains the following topics:

Topic Page
References to Data Instances by Value 272
References to Data Instances by Name 274
References to Data Instances by Address 277
Data Naming Rules 281
35006144 10/2019 271

Data References
References to Data Instances by Value

Introduction
What is a data instance reference? (see page 186)

At a Glance
A reference to a data instance by a value is an instance which does not have a name (symbol) or
topological address.
This corresponds to an immediate value which can be assigned to a data type instance belonging
to the EDT family.
Standard IEC 1131 authorizes immediate values on instances of the following data types:
 Booleans
 BOOL
 EBOOL

 integers
 INT
 UINT
 DINT
 UDINT
 TIME

 reals
 REAL

 dates and times
 DATE
 DATE AND TIME
 TIME OF DAY

 character strings
 STRING

The programming software goes beyond the scope of the standard by adding the bit string types.
 BYTE
 WORD
 DWORD
272 35006144 10/2019

Data References
Examples of Immediate Values:
This table associates immediate values with types of instance

Immediate value Type of instance
‘I am a character string’ STRING
T#1s TIME
D#2000-01-01 DATE
TOD#12:25:23 TIME_OF_DAY
DT#2000-01-01-12:25:23 DATE_AND_TIME
16#FFF0 WORD
UINT#16#9AF (typed value) UINT
DWORD#16#FFFF (typed value) DWORD
35006144 10/2019 273

Data References
References to Data Instances by Name

Introduction
What is a data instance reference? (see page 186)

References to Instances of the EDT Family
The user chooses a name (symbol) which can be used to access the data instance:

References to Instances of the DDT Family
Tables:
The user chooses a name (symbol) which can be used to access the data instance:
274 35006144 10/2019

Data References
Structures:
The user chooses a name (symbol) which can be used to access the data instance:
35006144 10/2019 275

Data References
References to Instances of the DFB\EFB Families
The user chooses a name (symbol) which can be used to access the data instance.
276 35006144 10/2019

Data References
References to Data Instances by Address

Introduction
What is a data instance reference? (see page 186)

At a Glance
It is only possible to reference a data instance by address for certain data instances that belong to
the EDT family. These instances are:
 internal variables (%M<i>, %MW<i>, %MD<i>, %MF<i>)
 constants (%KW<i>, %KD<i>, %KF<i>)
 inputs/outputs (%I<address>, %Q<address>)
NOTE: Instances %MD<i>, %MF<i>, %KD<i>, and %KF<i> are not available for Modicon M340
and Modicon M580.

Reference by Direct Addressing
Addressing is considered direct when the address of the instance is fixed, or, in other words, when
it is written into the program.
Examples:
35006144 10/2019 277

Data References
References by Indexed Address
Addressing is considered indexed when the address of the instance is completed with an index.
The index is defined either by:
 a value belonging to an Integer type
 an arithmetical expression made up of Integer types
An indexed variable always has a non-indexed equivalent:

The rules for calculating <j> are as follows.

Examples:

During compilation of the program, a check verifies that:
 the index is not negative
 the index does not exceed the space in the memory allocated to each of these three data types

Object<i>[index] Object<j>
%M<i>[index] <j>=<i> + <index>
%MW<i>[index] <j>=<i> + <index>
%KW<i>[index] <j>=<i> + <index>
%MD<i>[index] <j>=<i> + (<index> x 2)
%KD<i>[index] <j>=<i> + (<index> x 2)
%MF<i>[index] <j>=<i> + (<index> x 2)
%KF<i>[index] <j>=<i> + (<index> x 2)
278 35006144 10/2019

Data References
Word Extract Bits
It is possible to extract one of the 16 bits of single words (%MW, %SW; %KW, %IW, %QW).
The address of the instance is completed with the rank of the extracted bit (<j>).

Examples:

Byte Extract Bits
It is possible to extract one of the bits of a byte
The address of the extracted bit is accessible via:
 The name of the corresponding byte.
 The rank defining its position in the byte. (a number between 0 and 7)
Example:
MyByte is a variable of type BYTE. MyByte.i is a valid BOOL if 0 <= i <= 7
MyByte.0, MyByte.3 and MyByte.7 are valid BOOL.
MyByte.8 is invalid.

Creating a Structure type with extracted bit
The user can create structure type using extracted bit (see EcoStruxure™ Control Expert,
Operating Modes).
The Bit Rank dialog box is accessible by right clicking on the instance or data type which type must
be:
 WORD
 UINT
 INT
 BYTE
 an extracted bit with a compatible parent
35006144 10/2019 279

Data References
Bit and Word Tables
These are a series of adjacent objects (bits or words) of the same type and of a defined length.

Presentation of bit tables:

Presentation of word tables:

Examples:
 %M2:65 Defines an EBOOL table from %M2 to %M66
 %M125:30 Defines an INT table from %MW125 to %MW154

Type Address Write access
Discrete I/O input bits %Ix.<i>:L No
Discrete I/O output bits %Qx.<i>:L Yes
Internal bits %M<i>:L Yes

Type Address Write access
Internal words %MW<i>:L

%MD<i>:L
%MF<i>:L

Yes

Constant words %KW<i>:L
%KD<i>:L
%KF<i>:L

No

System words %SW50:4 Yes
280 35006144 10/2019

Data References
Data Naming Rules

Introduction
In an application the user chooses a name to:
 define a type of data
 instantiate a data item (symbol)
 identify a Program Unit
 identify a section
Some rules have been defined in order to avoid conflicts occurring. This means that it is necessary
to differentiate between the different domains of application of data

What is a Domain?
It is an area of the application from which a variable can or cannot be accessed, such as:
 the application domain which includes:
 the various application tasks
 the Program Units and/or sections of which it is composed

 the domains for each data type such as:
 structures/tables for the DDT family
 EFB/DFBs for the function block family

Rules
This table defines whether or not it is possible to use a name that already exists in the application
for newly-created elements:

Application
Content ->
New elements
(below)

Program
unit

Section SR DDT/IO
DDT

FB type FB Instances EF Variable

Program Unit No No No Yes Yes Yes Yes Yes
Section No No(5) No Yes Yes Yes Yes Yes

SR No No No Yes Yes No (1) No

DDT/IODDT No No No No No(4) No No(4) No

(1) An instance belonging to the application domain cannot have the same name as an EF.
(2) An instance belonging to the type domain (internal variable) can have the same name as an EF. The

EF in question cannot be used in this type.
(3) The creation or import of EFB/DFBs with the same name as an existing instance are prohibited.
(4) An DDT/IODDT element might have the same name of an FB/EF, however in this case you could not

use the FB/EF in the application.
(5) Exception: there is no conflict between the name of a section belonging a program unit and the name

of a section belonging to another program unit.
35006144 10/2019 281

Data References
NOTE: A number of additional considerations to the rules given in the table are listed below,
specifying that:
 Within a type, an instance (internal variable) cannot have the same name as the type name of

the object to which it belongs,
 There is no conflict between the name of an instance belonging to a section of the application

and the name of the instance belonging to a section of a DFB,
 There is no conflict between the name of a section belonging to a task and the name of the

section belonging to a DFB.

FB type Yes Yes Yes No No (3) No (3)

FB Instances No No No No Yes No Yes No
EF Yes Yes (2) No No No No No

Variable Yes Yes No Yes Yes No (1) No

Application
Content ->
New elements
(below)

Program
unit

Section SR DDT/IO
DDT

FB type FB Instances EF Variable

(1) An instance belonging to the application domain cannot have the same name as an EF.
(2) An instance belonging to the type domain (internal variable) can have the same name as an EF. The

EF in question cannot be used in this type.
(3) The creation or import of EFB/DFBs with the same name as an existing instance are prohibited.
(4) An DDT/IODDT element might have the same name of an FB/EF, however in this case you could not

use the FB/EF in the application.
(5) Exception: there is no conflict between the name of a section belonging a program unit and the name

of a section belonging to another program unit.
282 35006144 10/2019

EcoStruxure™ Control Expert
Programming Language
35006144 10/2019
Programming Language

Part IV
Programming Language

Contents of this Part
This part describes the syntax of the programming languages that are available.

What Is in This Part?
This part contains the following chapters:

Chapter Chapter Name Page
10 Function Block Language FBD 285
11 Ladder Diagram (LD) 313
12 SFC Sequence Language 355
13 Instruction List (IL) 413
14 Structured Text (ST) 461
35006144 10/2019 283

Programming Language
284 35006144 10/2019

EcoStruxure™ Control Expert
Function Block Language FBD
35006144 10/2019
Function Block Language FBD

Chapter 10
Function Block Language FBD

Overview
This chapter describes the function block language FBD which conforms to IEC 61131.

What Is in This Chapter?
This chapter contains the following topics:

Topic Page
General Information about the FBD Function Block Language 286
Elementary Functions, Elementary Function Blocks, Derived Function Blocks and Procedures
(FFBs)

288

Subroutine Calls 298
Control Elements 299
Link 300
Text Object 302
Execution Sequence of the FFBs 303
Change Execution Sequence 306
Loop Planning 311
35006144 10/2019 285

Function Block Language FBD
General Information about the FBD Function Block Language

Introduction
The FBD editor is used for graphical function block programming according to IEC 61131-3.

Representation of an FBD Section
Representation:

Objects
The objects of the FBD programming language (Function Block Diagram) help to divide a section
into a number of:
 EFs and EFBs (Elementary Functions (see page 288) and Elementary Function Blocks

(see page 288)),
 DFBs (Derived Function Blocks) (see page 289),
 Procedures (see page 290) and
 Control Elements (see page 299).
These objects, combined under the name FFBs, can be linked with each other by:
 Links (see page 300) or
 Actual Parameters (see page 290).
Comments regarding the section logic can be provided using text objects (see Text Object,
page 302).
286 35006144 10/2019

Function Block Language FBD
Section Size
One FBD section consists of a window containing a single page.
This page has a grid background. A grid unit consists of 10 coordinates. A grid unit is the smallest
possible space between 2 objects in an FBD section.
The FBD programming language is not cell oriented but the objects are still aligned with the grid
coordinates.
An FBD section can be configured in number of cells (horizontal grid coordinates and vertical grid
coordinates).

IEC Conformity
For a description of the extent to which the FBD programming language conforms to IEC, see IEC
Conformity (see page 565).
35006144 10/2019 287

Function Block Language FBD
Elementary Functions, Elementary Function Blocks, Derived Function Blocks and
Procedures (FFBs)

Introduction
FFB is the generic term for:
 Elementary Function (EF) (see page 288)
 Elementary Function Block (EFB) (see page 288)
 DFB (Derived Function Block) (see page 289)
 Procedure (see page 290)

Elementary Function
Elementary functions (EF) have no internal states. If the input values are the same, the value on
the output is the same every time the function is called. For example, the addition of two values
always gives the same result.
An elementary function is represented graphically as a frame with inputs and one output. The
inputs are always represented on the left and the output is always on the right of the frame.
The name of the function, i.e. the function type, is displayed in the center of the frame.
The execution number (see page 303) for the function is shown to the right of the function type.
The function counter is shown above the frame. The function counter is the sequential number of
the function within the current section. Function counters cannot be modified.
Elementary Function

With some elementary functions, the number of inputs can be increased.

Elementary Function Block
Elementary function blocks (EFBs) have internal states. If the input values are the same, the value
on the output can be different each time the function is called. e.g. for a counter the value on the
output is incremented.
An elementary function block is represented graphically as a frame with inputs and outputs. The
inputs are always represented on the left and the outputs always on the right of the frame.
Function blocks can have more than one output.
The name of the function block, i.e. the function block type, is displayed in the center of the frame.
The execution number (see page 303) for the function block is shown to the right of the function
block type.
288 35006144 10/2019

Function Block Language FBD
The instance name is displayed above the frame.
The instance name serves as a unique identification for the function block in a project.
The EFB instance name is created automatically and has the following structure: TYPE_n, where:
 TYPE is the type of the function block.
 n is the sequential number of the function block type in the project.

For example:
 First instance of a type EFB type TON is named TON_0
 First instance of a type EFB type MOTOR is named MOTOR_0
 Second instance of a type EFB type TON is named TON_1
This automatically generated name can be modified for clarification. The instance name (max. 32
characters) must be unique throughout the project and is not case-sensitive. The instance name
must conform to general naming conventions.
NOTE: To conform to IEC61131-3, only letters are permitted as the first character of the name. If
you want to use a numeral as your first character however, this must be enabled explicitly.
Elementary Function Block

DFB
Derived function blocks (DFBs) have the same properties as elementary function blocks. The user
can create them in the programming languages FBD, LD, IL, and/or ST.
The only difference to elementary function blocks is that the derived function block is represented
as a frame with double vertical lines.
Derived Function Block
35006144 10/2019 289

Function Block Language FBD
Procedure
Procedures are functions viewed technically.
The only difference to elementary functions is that procedures can occupy more than one output
and they support data type VAR_IN_OUT.

Procedures are a supplement to IEC 61131-3 and must be enabled explicitly.
To the eye, procedures are no different than elementary functions.
Procedure

Parameters
Inputs and outputs are required to transfer values to or from an FFB. These are called formal
parameters.
Objects are linked to formal parameters; these objects contain the current process states. They are
called actual parameters.
Formal and actual parameters:

At program runtime, the values from the process are transferred to the FFB via the actual
parameters and then output again after processing.
290 35006144 10/2019

Function Block Language FBD
Only one object (actual parameter) of the following types may be linked to FFB inputs:
 Variable
 Address
 Literal
 ST Expression (see page 463)

ST expressions on FFB inputs are a supplement to IEC 61131-3 and must be enabled explicitly.
 Link
The following combinations of objects (actual parameters) can be linked to FFB outputs:
 one variable
 a variable and one or more connections (but not for VAR_IN_OUT (see page 296) outputs)
 an address
 an address and one or more connections (but not for VAR_IN_OUT (see page 296) outputs)
 one or more connections (but not for VAR_IN_OUT (see page 296) outputs)
The data type of the object to be linked must be the same as that of the FFB input/output. If all
actual parameters consist of literals, a suitable data type is selected for the function block.
Exception: For generic FFB inputs/outputs with data type ANY_BIT, it is possible to link objects of
data type INT or DINT (not UINT and UDINT).

This is a supplement to IEC 61131-3 and must be enabled explicitly.
Example:
Allowed:

Not allowed:

(In this case, AND_INT must be used.)

Not all formal parameters have to be assigned an actual parameter. However, this does not apply
in the case of negated pins. These must always be assigned an actual parameter. This is also the
case with some formal parameter types. These types are shown in the following table.
35006144 10/2019 291

Function Block Language FBD
Table of formal parameter types:

FFBs that use actual parameters on the inputs that have not yet received any value assignment,
work with the initial values of these actual parameters.
If no value is allocated to a formal parameter, then the initial value is used for executing the function
block. If no initial value has been defined then the default value ("0") is used.
If a formal parameter is not assigned a value and the function block/DFB instance is invoked more
than once, then the subsequently executed invocations are run with the last effective actual value.
NOTE: Unassigned data structures are always initialized with value "0", initial values can not be
defined.
NOTE: An ANY_ARRAY_xxx input pin not connected will create automatically an hidden array of
1 element.

Parameter type EDT STRING ARRAY ANY_ARRAY IODDT DEVICE
DDT

STRUCT FB ANY

EFB: Input - - - - / / - / -
EFB: VAR_IN_OUT + - - - + / - / -
EFB: Output - - + + + / - / +
DFB: Input - - - - / + - / -
DFB: VAR_IN_OUT + - - - + + - / -
DFB: Output - - + / / / - / +
EF: Input - - - - + / - + -
EF: VAR_IN_OUT + - - - + / - / -
EF: Output - - - - - / - / -
Procedure: Input - - - - + / - + -
Procedure:
VAR_IN_OUT

+ + + + + / + / +

Procedure: Output - - - - - / - / +
+ Actual parameter required
- Actual parameter not required, it's the general rule, but there are exceptions for some FFBs, for instance when

some parameters are used to characterize the information we want to be given by the FFB.
/ not applicable
292 35006144 10/2019

Function Block Language FBD
Public Variables
In addition to inputs and outputs, some function blocks also provide public variables.
These variables transfer static values (values that are not influenced by the process) to the function
block. They are used for setting parameters for the function block.
Public variables are a supplement to IEC 61131-3.
The assignment of values to public variables is made using their initial values.
Public variables are read via the instance name of the function block and the names of the public
variables.
Example:

Private Variables
In addition to inputs, outputs and public variables, some function blocks also provide private
variables.
Like public variables, private variables are used to transfer statistical values (values that are not
influenced by the process) to the function block.
Private variables can not be accessed by user program. These type of variables can only be
accessed by the animation table.
NOTE: Nested DFBs are declared as private variables of the parent DFB. So their variables are
also not accessible through programming, but trough the animation table.
Private variables are a supplement to IEC 61131-3.
35006144 10/2019 293

Function Block Language FBD
Programming Notes
Attention should be paid to the following programming notes:
 FFBs are only executed if the input EN=1 or if the input EN (see page 294) is grayed out.
 Boolean inputs and outputs can be inverted.
 Special conditions apply when using VAR_IN_OUT variables (see page 296).
 Function block/DFB instances can be called multiple times (see page 294).

Multiple Function Block Instance Call
Function block/DFB instances can be called more than once; other than instances from
communication EFBs and function blocks/DFBs with an ANY output but no ANY input: these can
only be called once.
Calling the same function block/DFB instance more than once makes sense, for example, in the
following cases:
 If the function block/DFB has no internal value or it is not required for further processing.

In this case, memory is saved by calling the same function block/DFB instance more than once
since the code for the function block/DFB is only loaded once.
The function block/DFB is then handled like a "Function".

 If the function block/DFB has an internal value and this is supposed to influence various
program segments, for example, the value of a counter should be increased in different parts of
the program.
In this case, calling the same function block/DFB means that temporary results do not have to
be saved for further processing in another part of the program.

EN and ENO
One EN input and one ENO output can be used in all FFBs.

If the value of EN is equal to "0" when the FFB is invoked, the algorithms defined by the FFB are
not executed and ENO is set to "0".

If the value of EN is equal to "1" when the FFB is invoked, the algorithms defined by the FFB is
executed. After the algorithms have been executed successfully, the value of ENO is set to "1". If
an error occurs when executing these algorithms, ENO is set to "0".

If the EN pin is not assigned a value, when the FFB is invoked, the algorithm defined by the FFB is
executed (same as if EN equals to "1"), Please refer to Maintain output links on disabled EF
(see EcoStruxure™ Control Expert, Operating Modes).
294 35006144 10/2019

Function Block Language FBD
If ENO is set to "0" (caused by EN=0 or an error during execution):
 Function blocks
 EN/ENO handling with function blocks that (only) have one link as an output parameter:

If EN of FUNCBLOCK_1 is set to "0", the link on output OUT of FUNCBLOCK_1 maintains the
old status it had during the last correctly executed cycle.

 EN/ENO handling with function blocks that have one variable and one link as output
parameters:

If EN of FUNCBLOCK_1 is set to "0", the link on output OUT of FUNCBLOCK_1 maintains the
old status it had during the last correctly executed cycle. The OUT1 variable on the same pin
either retains its previous status or can be changed externally without influencing the link.
The variable and the link are saved independently of each other.

 Functions/Procedures
As defined in IEC61131-3, the outputs from deactivated functions (EN input set to "0") are
undefined. (The same applies to procedures.)
Here nevertheless an explanation of the output statuses in this case:
 EN/ENO handling with function/procedure blocks that (only) have one link as an output

parameter:

If EN of FUNC_PROC_1 is set to "0", the value of the link on output OUT of FUNC_PROC_1
depends on the project setting Maintain output links on disabled EF.
If this project setting is set to “0”, the value of the link is set to “0”.
If this project setting is set to “1”, the link maintains the old value it had during the last correctly
executed cycle.
Please refer to Maintain output links on disabled EF (see EcoStruxure™ Control Expert,
Operating Modes).
35006144 10/2019 295

Function Block Language FBD
 EN/ENO handling with function/procedure blocks that have one variable and one link as
output parameters:

If EN of FUNC_PROC_1 is set to "0", the value of the link on output OUT of FUNC_PROC_1
depends on the project setting Maintain output links on disabled EF.
If this project setting is set to “0”, the value of the link is set to “0”.
If this project setting is set to “1”, the link maintains the old value it had during the last correctly
executed cycle.
Please refer to Maintain output links on disabled EF (see EcoStruxure™ Control Expert,
Operating Modes).
The OUT1 variable on the same pin either retains its previous status or can be changed
externally without influencing the link. The variable and the link are saved independently of
each other.

The output behavior of the FFBs does not depend on whether the FFBs are invoked without
EN/ENO or with EN=1.

NOTE: For disabled function blocks (EN = 0) with an internal time function (e.g. function block
DELAY), time seems to keep running, since it is calculated with the help of a system clock and is
therefore independent of the program cycle and the release of the block.

VAR_IN_OUT Variable
FFBs are often used to read a variable at an input (input variables), to process it and to output the
altered values of the same variable (output variables).
This special type of input/output variable is also called a VAR_IN_OUT variable.

The link between input and output variables is represented by a line in the FFB.
VAR_IN_OUT variable
296 35006144 10/2019

Function Block Language FBD
The following special features are to be noted when using FFBs with VAR_IN_OUT variables.
 All VAR_IN_OUT inputs must be assigned a variable.
 Via graphical links only VAR_IN_OUT outputs with VAR_IN_OUT inputs can be connected.
 Only one graphical link can be connected to a VAR_IN_OUT input/output.
 A combination of variable/address and graphical connections is not possible for VAR_IN_OUT

outputs).
 No literals or constants can be connected to VAR_IN_OUT inputs/outputs.
 No negations can be used on VAR_IN_OUT inputs/outputs.
 Different variables/variable components can be connected to the VAR_IN_OUT input and the

VAR_IN_OUT output. In this case the value of the variables/variable component on the input is
copied to the at the output variables/variable component.
35006144 10/2019 297

Function Block Language FBD
Subroutine Calls

Calling a Subroutine
In FBD, subroutines are called using the following blocks.

If the status of EN is 1, the respective subroutine (variable name inSR_Name) is called.

The output ENO is not used to display the error status for this type of block. The output ENO is
always 1 for this type of block and is used to call multiple subroutines simultaneously.
The following construction makes it possible to call multiple subroutines simultaneously.

The subroutine to be called must be located in the same task as the FBD section called.
Subroutines can also be called from within subroutines.
Subroutine calls are a supplement to IEC 61131-3 and must be enabled explicitly.
In SFC action sections, subroutine calls are only allowed when Multitoken Operation is enabled.
298 35006144 10/2019

Function Block Language FBD
Control Elements

Introduction
Control elements are used for executing jumps within an FBD section and for returning from a
subroutine (SRx) or derived function block (DFB) to the main program.

Control Elements
The following control elements are available.

Designation Representation Description
Jump When the status of the left link is 1, a jump is made to a label (in the current

section).
To generate a conditional jump, a jump object is linked to a Boolean FFB
output.
To generate an unconditional jump, the jump object is assigned the value 1
for example, using the AND function.

Label LABEL: Labels (jump targets) are indicated as text with a colon at the end.
This text is limited to 32 characters and must be unique within the entire
section. The text must conform to general naming conventions.
Jump labels can only be placed between the first two grid points on the left
edge of the section.
Note: Jump labels may not "cut through" networks, i.e. an assumed line
from the jump label to the right edge of the section may not be crossed by
any object. This is also valid for links.

Return RETURN objects can not be used in the main program.
 In a DFB, a RETURN object forces the return to the program which called

the DFB.
 The rest of the DFB section containing the RETURN object is not

executed.
 The next sections of the DFB are not executed.

The program which called the DFB will be executed after return from the
DFB.
If the DFB is called by another DFB, the calling DFB will be executed
after return.

 In a SR, a RETURN object forces the return to the program which called
the SR.
 The rest of the SR containing the RETURN object is not executed.

The program which called the SR will be executed after return from the
SR.
35006144 10/2019 299

Function Block Language FBD
Link

Description
Links are vertical and horizontal connections between FFBs.

Representation
The link coordinates are identified by a filled circle.

Crossed links are indicated by a "broken" link.
300 35006144 10/2019

Function Block Language FBD
Programming Notes
Attention should be paid to the following programming notes:
 Links can be used for any data type.
 The data types of the inputs/outputs to be linked must be the same.
 Several links can be connected with one FFB output. Only one may be linked with an FFB input

however.
 Inputs and outputs may be linked to one-another. Linking more than one output together is not

possible. That means that no OR connection is possible using links in FBD. An OR function is to
be used in this case.

 Overlapping links with other objects is permitted.
 Links may not be used to create loops since the sequence of execution in this case cannot be

clearly determined in the section. Loops must be created using actual parameters (see Loop
Planning, page 311).

 To avoid links crossing each other, links can also be represented in the form of connectors.
The source and target for the connection are labeled with a name that is unique within the
section.
The connector name has the following structure depending on the type of source object for the
connection:
 For functions: "Function counter/formal parameter" for the source of the connection

 For function blocks: "Instance name/formal parameter" for the source of the connection
35006144 10/2019 301

Function Block Language FBD
Text Object

Description
Text can be positioned as text objects using FBD Function Block language. The size of these text
objects depends on the length of the text. The size of the object, depending on the size of the text,
can be extended vertically and horizontally to fill further grid units. Text objects may not overlap
with FFBs; however they may overlap with links.
302 35006144 10/2019

Function Block Language FBD
Execution Sequence of the FFBs

Introduction
The execution sequence is determined by the position of the FFBs within the section (executed
from left to right and from top to bottom). If the FFBs are then linked graphically, the execution
sequence is determined by the signal flow.
The execution sequence is indicated by the execution number (number in the top right corner of
the FFB frame).

Execution Sequence on Networks
For network execution sequences, the following rules apply:
 Executing a section is completed network by network based on the FFB links from above and

below.
 Links may not be used to create loops since the sequence of execution in this case cannot be

clearly determined. Loops must be created using actual parameters (see Loop Planning,
page 311).

 The execution sequence for networks that are not linked is determined by the graphic sequence
(from top-right to bottom-left). This execution sequence can be influenced (see Change
Execution Sequence, page 306).

 Processing on a network is ended completely before the processing begins on another network
for which outputs are used on the previous network.

 No element of a network is deemed to be processed as long as the status of all inputs of this
element are not calculated.

 Processing on a network is only ended if all outputs on this network have been processed.

Signal Flow within a Network
For execution sequences within a network, the following rules apply:
 An FFB is only processed if all elements (FFB outputs etc.) with which its inputs are linked are

processed.
 The execution sequence of FFBs that are linked with various outputs of the same FFB runs from

top to bottom.
 The execution sequence of FFBs is not influenced by the location within the network.

This does not apply if more than one FFB is linked to the same output of the "calling" FFB. In
this case, the execution sequence is determined by the graphic sequence (from top to bottom).
35006144 10/2019 303

Function Block Language FBD
Priorities
Priorities in Defining the Signal Flow Within a Section.

Priority Rule Description
1 Link Links have the highest priorities in defining the signal flow within a FBD

section.
2 User Definition User Access to Execution Sequence.
3 Network by

Network
Processing on a network is ended completely before the processing begins
on another network.

4 Output Sequence FFBs that are linked to the outputs of the same "calling" FFB are processed
from top to bottom.

5 Rung by Rung Lowest priority. (Only applies if none of the other rules apply).
304 35006144 10/2019

Function Block Language FBD
Example
Example of the Execution Sequence of Objects in an FBD Section:
35006144 10/2019 305

Function Block Language FBD
Change Execution Sequence

Introduction
The execution order of networks and the execution order of objects within a network are defined
by a number of rules (see page 304).
In some cases the execution order suggested by the system should be changed.
The procedure for defining/changing the execution sequence of networks is as follows:
 Using links instead of actual parameters
 Network positions
 Explicit execution sequence definition
The procedure for defining/changing the execution sequence of networks is as follows:
 FFB positions

Original Situation
The following diagram shows two networks for which the execution sequences are simply defined
by their positions within the section, without taking into account the fact that blocks .4/.5 and
.7/.8 require a different execution sequence.
306 35006144 10/2019

Function Block Language FBD
Link Instead of Actual Parameters
By using a link instead of a variable the two networks are executed in the proper sequence (see
also Original Situation, page 306).
35006144 10/2019 307

Function Block Language FBD
Network Positions
The correct execution sequence can be achieved by changing the position of the networks in the
section (see also Original Situation, page 306).
308 35006144 10/2019

Function Block Language FBD
Explicit Definition
The correct execution sequence can be achieved by explicitly changing the execution sequence
of an FFB. To indicate that which FFB’s had their execution order changed, the execution number
is shown in a black field (see also Original Situation, page 306).

NOTE: Only one reference of an instance is allowed, e.g. the instance ".7" may only be referenced
once.
35006144 10/2019 309

Function Block Language FBD
FFB Positions
The position of FFBs only influences the execution sequence if more than one FFB is linked to the
same output of the "calling" FFB (see also Original Situation, page 306).
In the first network, block positions .4 and .5 are switched. In this case (common origins for both
block inputs) the execution sequence of both blocks is switched as well (processed from top to
bottom).
In the second network, block positions .7 and .8 are switched. In this case (different origins for
the block inputs) the execution sequence of the blocks is not switched (processed in the order the
block outputs are called).
310 35006144 10/2019

Function Block Language FBD
Loop Planning

Non-Permitted Loops
Configuring loops exclusively via links is not permitted since it is not possible to clearly specify the
signal flow (the output of one FFB is the input of the next FFB, and the output of this one is the
input of the first).
Non-permitted Loops via Links

Generating Via an Actual Parameter
This type of logic must be resolved using feedback variables so that the signal flow can be
determined.
Feedback variables must be initialized. The initial value is used during the first execution of the
logic. Once they have been executed the initial value is replaced by the actual value.
Pay attention to the two different types of execution sequences (number in brackets after the
instance name) for the two blocks.
Loop generated with an actual parameter: Type 1

Loop generated with an actual parameter: Type 2
35006144 10/2019 311

Function Block Language FBD

312 35006144 10/2019

EcoStruxure™ Control Expert
Ladder Diagram (LD)
35006144 10/2019
Ladder Diagram (LD)

Chapter 11
Ladder Diagram (LD)

Overview
This chapter describes the ladder diagram language LD which conforms to IEC 611311.

What Is in This Chapter?
This chapter contains the following topics:

Topic Page
General Information about the LD Ladder Diagram Language 314
Contacts 317
Coils 318
Elementary Functions, Elementary Function Blocks, Derived Function Blocks and Procedures
(FFBs)

320

Control Elements 330
Operate Blocks and Compare Blocks 331
Links 333
Text Object 336
Edge Recognition 337
Execution Sequence and Signal Flow 346
Loop Planning 348
Change Execution Sequence 350
35006144 10/2019 313

Ladder Diagram (LD)
General Information about the LD Ladder Diagram Language

Introduction
This section describes the Ladder Diagram (LD) according to IEC 61131-3.
The structure of an LD section corresponds to a rung for relay switching.
The left power rail is located on the left-hand side of the LD editor. This left power rail corresponds
to the phase (L ladder) of a rung. With LD programming, in the same way as in a rung, only the LD
objects which are linked to a power supply, that is to say connected to the left power rail, are
"processed". The right power rail corresponds to the neutral wire. However, all coils and FFB
outputs are linked with it directly or indirectly, and this creates a power flow.
A group of objects which are linked together one below the other, and have no links to other objects
(excluding the power rail), is called a network or a rung.
314 35006144 10/2019

Ladder Diagram (LD)
Representation of an LD Section
Representation:
35006144 10/2019 315

Ladder Diagram (LD)
Objects
The objects of the LD programming language help to divide a section into a number of:
 Contacts (see page 317)
 Coils (see page 318)
 EFs and EFBs (Elementary Functions (see page 320) and Elementary Function Blocks

(see page 321))
 DFBs (Derived Function Blocks (see page 322))
 Procedures (see page 322)
 Control Elements (see page 330) and
 Operation and Comparison blocks (see page 331) that represent an extension to IEC 61131-3
These objects can be connected with each other by means of:
 Links (see page 333) or
 Actual Parameters (see page 323) (FFBs only).
Comments regarding the section logic can be provided using text objects (see Text Object,
page 336).

Section Size
One LD section consists of a window containing a single page.
This page has a grid that divides the section into rows and columns.
A width of 11-63 columns and 17-3998 lines can be defined for LD sections.
The LD programming language is cell oriented, i.e. only one object can be placed in each cell.

Processing Sequence
The processing sequence of the individual objects in an LD section is determined by the data flow
within the section. Networks connected to the left power rail are processed from top to bottom (link
to the left power rail). Networks that are independent of each other within the section are processed
according to their position (from top to bottom) (see also Execution Sequence and Signal Flow,
page 346).

IEC Conformity
For a description of IEC conformity for the LD programming language, see IEC Conformity
(see page 565).
316 35006144 10/2019

Ladder Diagram (LD)
Contacts

Introduction
A contact is an LD element that transfers a status on the horizontal link to its right side. This status
is the result of a Boolean AND operation on the status of the horizontal link on the left side with the
status of the relevant Boolean actual parameter.
A contact does not change the value of the relevant actual parameter.
Contacts take up one cell.
The following are permitted as actual parameters:
 Boolean variables
 Boolean constants
 Boolean addresses (topological addresses or symbolic addresses)
 ST expression (see page 463) delivering a Boolean result (e.g. VarA OR VarB)

ST expressions as actual parameters for contacts are a supplement to IEC 61131-3 and must
be enabled explicitly

Contact Types
The following contacts are available:

Designation Representation Description
Normally open In the case of normally open contacts, the status of the left link is

transferred to the right link if the status of the relevant Boolean
actual parameter (indicated with xxx) is ON. Otherwise, the status
of the right link is OFF.

Normally closed In the case of normally closed contacts, the status of the left link is
transferred to the right link if the status of the relevant Boolean
actual parameter (indicated with xxx) is OFF. Otherwise, the status
of the right link is OFF.

Contact for detecting
positive transitions

With contacts for detection of positive transitions, the right link for
a program cycle is ON if a transfer of the relevant actual parameter
(labeled by xxx) goes from OFF to ON and the status of the left link
is ON at the same time. Otherwise, the status of the right link is 0.
Also see Edge Recognition, page 337.

Contact for detecting
negative transitions

With contacts for detection of negative transitions, the right link for
a program cycle is ON if a transfer of the relevant actual parameter
(labeled by xxx) goes from ON to OFF and the status of the left link
is ON at the same time. Otherwise, the status of the right link is 0.
Also see Edge Recognition, page 337.
35006144 10/2019 317

Ladder Diagram (LD)
Coils

Introduction
A coil is an LD element which transfers the status of the horizontal link on the left side, unchanged,
to the horizontal link on the right side. The status is stored in the respective Boolean actual
parameter.
Normally, coils follow contacts or FFBs, but they can also be followed by contacts.
Coils take up one cell.
The following are permitted as actual parameters:
 Boolean variables
 Boolean addresses (topological addresses or symbolic addresses)

Coil Types
The following coils are available:

Designation Representation Description
Coil With coils, the status of the left link is transferred to the relevant Boolean

actual parameter (indicated by xxx) and the right link.

Negated coil With negated coils, the status of the left link is copied onto the right link. The
inverted status of the left link is copied to the relevant Boolean actual
parameter (indicated by xxx). If the left link is OFF, then the right link will also
be OFF and the relevant Boolean actual parameter will be ON.

Coil for
detecting
positive
transitions

With coils that detect positive transitions, the status of the left link is copied
onto the right link. The relevant actual parameter of data type EBOOL
(indicated by xxx) is 1 for a program cycle, if a transition of the left link from
0 to 1 is made.
Also see Edge Recognition, page 337.

 Coil for
detecting
negative
transitions

With coils that detect negative transitions, the status of the left link is copied
onto the right link. The relevant actual Boolean parameter (indicated by xxx)
is 1 for a program cycle, if a transition of the left link from 1 to 0 is made.
Also see Edge Recognition, page 337.

Set coil With set coils, the status of the left link is copied onto the right link. The
relevant Boolean actual parameter (indicated by xxx) is set to ON if the left
link has a status of ON, otherwise it remains unchanged. The relevant
Boolean actual parameter can be reset through the reset coil.
Also see Edge Recognition, page 337.

Reset coil With reset coils, the status of the left link is copied onto the right link. The
relevant Boolean actual parameter (indicated by xxx) is set to OFF if the left
link has a status of ON, otherwise it remains unchanged. The relevant
Boolean actual parameter can be set through the set coil.
Also see Edge Recognition, page 337.
318 35006144 10/2019

Ladder Diagram (LD)
Halt coil With halt coils, if the status of the left link is 1, the program execution is
stopped immediately (With halt coils the status of the left link is not copied
to the right link.). Sets the CPU to HALT mode (see page 176).

Call coil With call coils, the status of the left link is copied to the right link. If the status
of the left link is ON then the respective sub-program (indicated by xxx) is
called.
The subroutine to be called must be located in the same task as the calling
LD section. Subroutines can also be called from within subroutines.
Subroutines are a supplement to IEC 61131-3 and must be enabled
explicitly.
In SFC action sections, call coils (subroutine calls) are only allowed when
Multitoken Operation is enabled.

Designation Representation Description
35006144 10/2019 319

Ladder Diagram (LD)
Elementary Functions, Elementary Function Blocks, Derived Function Blocks and
Procedures (FFBs)

Introduction
FFB is the generic term for:
 Elementary Function (EF) (see page 320)
 Elementary Function Block (EFB) (see page 321)
 Derived Function Block (DFB) (see page 322)
 Procedure (see page 322)
FFBs occupy 1 to 3 columns (depending on the length of the formal parameter names) and 2 to 33
lines (depending on the number of formal parameter rows).

Elementary Function
Functions have no internal states. If the input values are the same, the value on the output is the
same every time the function is called. For example, the addition of two values always gives the
same result.
An elementary function is represented graphically as a frame with inputs and one output. The
inputs are always represented on the left and the output is always on the right of the frame.
The name of the function, i.e. the function type, is displayed in the center of the frame.
The execution number (see page 346) for the function is shown to the right of the function type.
The function counter is shown above the frame. The function counter is the sequential number of
the function within the current section. Function counters cannot be modified.
Elementary Function

With some elementary functions, the number of inputs can be increased.
320 35006144 10/2019

Ladder Diagram (LD)
Elementary Function Block
Elementary function blocks have internal states. If the input values are the same, the value on the
output can be different each time the function is called. e.g. for a counter the value on the output
is incremented.
An elementary function block is represented graphically as a frame with inputs and outputs. The
inputs are always represented on the left and the outputs always on the right of the frame. The
name of the function block, i.e. the function block type, is displayed in the center of the frame. The
instance name is displayed above the frame.
Function blocks can have more than one output.
The name of the function block, i.e. the function block type, is displayed in the center of the frame.
The execution number (see page 346) for the function block is shown to the right of the function
block type.
The instance name is displayed above the frame.
The instance name serves as a unique identification for the function block in a project.
The instance name is created automatically and has the following structure: TYPE_n where TYPE
is the function block type name: TYPE_n
 TYPE = Function block type name
 n = sequential number of the function block in the project

This automatically generated name can be modified for clarification. The instance name (max. 32
characters) must be unique throughout the project and is not case-sensitive. The instance name
must conform to general naming conventions.
NOTE: To conform to IEC61131-3, only letters are permitted as the first character of the name. If
you want to use a numeral as your first character however, this must be enabled explicitly.
Elementary Function Block
35006144 10/2019 321

Ladder Diagram (LD)
DFB
Derived function blocks (DFBs) have the same properties as elementary function blocks. The user
can create them in the programming languages FBD, LD, IL, and/or ST.
The only difference to elementary function blocks is that the derived function block is represented
as a frame with double vertical lines.
Derived Function Block

Procedure
Procedures are functions viewed technically.
The only difference to elementary functions is that procedures can occupy more than one output
and they support data type VAR_IN_OUT.

To the eye, procedures are no different than elementary functions.
Procedures are a supplement to IEC 61131-3 and must be enabled explicitly.
Procedure
322 35006144 10/2019

Ladder Diagram (LD)
Parameters
Inputs and outputs are required to transfer values to or from an FFB. These are called formal
parameters.
Objects are linked to formal parameters; these objects contain the current process states. They are
called actual parameters.
Formal and actual parameters:

At program runtime, the values from the process are transferred to the FFB via the actual
parameters and then output again after processing.
Only one object (actual parameter) of the following types may be linked to FFB inputs:
 Contact
 Variable
 Address
 Literal
 ST Expression

ST expressions on FFB inputs are a supplement to IEC 61131-3 and must be enabled explicitly.
 Link
The following combinations of objects (actual parameters) can be linked to FFB outputs:
 one or more coils
 one or more contacts
 one variable
 a variable and one or more connections (but not for VAR_IN_OUT (see page 329) outputs)
 an address
 an address and one or more connections (but not for VAR_IN_OUT (see page 329) outputs)
 one or more connections (but not for VAR_IN_OUT (see page 329) outputs)
The data type of the object to be linked must be the same as that of the FFB input/output. If all
actual parameters consist of literals, a suitable data type is selected for the function block.
35006144 10/2019 323

Ladder Diagram (LD)
Exception: For generic FFB inputs/outputs with data type ANY_BIT, it is possible to link objects of
data type INT or DINT (not UINT and UDINT).

This is a supplement to IEC 61131-3 and must be enabled explicitly.
Example:
Allowed:

Not allowed:

(In this case, AND_INT must be used.)

Not all formal parameters have to be assigned an actual parameter. However, this does not apply
in the case of negated pins. These must always be assigned an actual parameter. This is also the
case with some formal parameter types. These types are shown in the following table.
Table of formal parameter types:

Parameter type EDT STRING ARRAY ANY_ARRAY IODDT Device DDT STRUCT FB ANY
EFB: Input - - - - / / - / -
DFB: Output - - + / / / - / +
EFB:
VAR_IN_OUT

+ + + + + / + / +

DFB: Input - - - - / + - / -
DFB:
VAR_IN_OUT

+ + + + + + + / +

EFB: Output - - + + + / - / +
EF: Input - - - - + / - + -
EF: VAR_IN_OUT + + + + + / + / +
EF: Output - - - - - - - / -
Procedure: Input - - - - + / - + -
324 35006144 10/2019

Ladder Diagram (LD)
FFBs that use actual parameters on the inputs that have not yet received any value assignment,
work with the initial values of these actual parameters.
If no value is allocated to a formal parameter, then the initial value will be used for executing the
function block. If no initial value has been defined then the default value (0) is used.
If a formal parameter is not assigned a value and the function block/DFB is instanced more than
once, then the subsequent instances are run with the old value.
NOTE: An ANY_ARRAY_xxx input pin not connected will create automatically an hidden array of
1 element.

Public Variables
In addition to inputs/outputs, some function blocks also provide public variables.
These variables transfer statistical values (values that are not influenced by the process) to the
function block. They are used for setting parameters for the function block.
Public variables are a supplement to IEC 61131-3.
The assignment of values to public variables is made using their initial values.
Public variables are read via the instance name of the function block and the names of the public
variables.
Example:

Procedure:
VAR_IN_OUT

+ + + + + / + / +

Procedure: Output - - - - - / - / +
+ Actual parameter required
- Actual parameter not required, it's the general rule, but there are exceptions for some FFBs, for instance when

some parameters are used to characterize the information we want to be given by the FFB.
/ not applicable

Parameter type EDT STRING ARRAY ANY_ARRAY IODDT Device DDT STRUCT FB ANY
35006144 10/2019 325

Ladder Diagram (LD)
Private Variables
In addition to inputs, outputs and public variables, some function blocks also provide private
variables.
Like public variables, private variables are used to transfer statistical values (values that are not
influenced by the process) to the function block.
Private variables can not be accessed by user program. These type of variables can only be
accessed by the animation table.
NOTE: Nested DFBs are declared as private variables of the parent DFB. So their variables are
also not accessible through programming, but trough the animation table.
Private variables are a supplement to IEC 61131-3.

Programming Notes
Attention should be paid to the following programming notes:
 FFBs will only be processed when they are directly or indirectly connected to the left bus bar.
 If the FFB will be conditionally executed, the EN (see page 327) input may be pre-linked through

contacts or other FFBs.
 Boolean inputs and outputs can be inverted.
 Special conditions apply when using VAR_IN_OUT variables (see page 329).
 Function block/DFB instances can be called multiple times (see page 326).

Multiple Function Block Instance Call
Function block/DFB instances can be called more than once; other than instances from
communication EFBs and function blocks/DFBs with an ANY output but no ANY input: these can
only be called once.
Calling the same function block/DFB instance more than once makes sense, for example, in the
following cases:
 If the function block/DFB has no internal value or it is not required for further processing.

In this case, memory is saved by calling the same function block/DFB instance more than once
since the code for the function block/DFB is only loaded once.
The function block/DFB is then handled like a "Function".

 If the function block/DFB has an internal value and this is supposed to influence various
program segments, for example, the value of a counter should be increased in different parts of
the program.
In this case, calling the same function block/DFB means that temporary results do not have to
be saved for further processing in another part of the program.
326 35006144 10/2019

Ladder Diagram (LD)
EN and ENO
One EN input and one ENO output can be used in all FFBs.

If the value of EN is equal to "0" when the FFB is invoked, the algorithms defined by the FFB are
not executed and ENO is set to "0".

If the value of EN is equal to "1" when the FFB is invoked, the algorithms defined by the FFB will
be executed. After the algorithms have been executed successfully, the value of ENO is set to "1".
If an error occurs when executing these algorithms, ENO is set to "0".

If the EN pin is not assigned a value, when the FFB is invoked, the algorithm defined by the FFB is
executed (same as if EN equals to "1"), Please refer to Maintain output links on disabled EF
(see EcoStruxure™ Control Expert, Operating Modes).
If ENO is set to "0" (caused by EN=0 or an error during execution):
 Function blocks
 EN/ENO handling with function blocks that (only) have one link as an output parameter:

If EN of FUNCBLOCK_1 is set to "0", the link on output OUT of FUNCBLOCK_1 maintains the
old status it had during the last correctly executed cycle.

 EN/ENO handling with function blocks that have one variable and one link as output
parameters:

If EN of FUNCBLOCK_1 is set to "0", the link on output OUT of FUNCBLOCK_1 maintains the
old status it had during the last correctly executed cycle. The OUT1 variable on the same pin
either retains its previous status or can be changed externally without influencing the link.
The variable and the link are saved independently of each other.
35006144 10/2019 327

Ladder Diagram (LD)
 Functions/Procedures
As defined in IEC61131-3, the outputs from deactivated functions (EN input set to "0") are
undefined. (The same applies to procedures.)
Here nevertheless an explanation of the output statuses in this case:
 EN/ENO handling with function/procedure blocks that (only) have one link as an output

parameter:

If EN of FUNC_PROC_1 is set to "0", the value of the link on output OUT of FUNC_PROC_1
depends on the project setting Maintain output links on disabled EF.
If this project setting is set to “0”, the value of the link is set to “0”.
If this project setting is set to “1”, the link maintains the old value it had during the last correctly
executed cycle.
For detailed information, please refer to Maintain output links on disabled EF
(see EcoStruxure™ Control Expert, Operating Modes).

 EN/ENO handling with function/procedure blocks that have one variable and one link as
output parameters:

If EN of FUNC_PROC_1 is set to "0", the value of the link on output OUT of FUNC_PROC_1
depends on the project setting Maintain output links on disabled EF.
If this project setting is set to “0”, the value of the link is set to “0”.
If this project setting is set to “1”, the link maintains the old value it had during the last correctly
executed cycle.
For detailed information, please refer to Maintain output links on disabled EF
(see EcoStruxure™ Control Expert, Operating Modes).
The OUT1 variable on the same pin either retains its previous status or can be changed
externally without influencing the link. The variable and the link are saved independently of
each other.

The output behavior of the FFBs does not depend on whether the FFBs are invoked without
EN/ENO or with EN=1.

NOTE: For disabled function blocks (EN = 0) with an internal time function (e.g. function block
DELAY), time seems to keep running, since it is calculated with the help of a system clock and is
therefore independent of the program cycle and the release of the block.
328 35006144 10/2019

Ladder Diagram (LD)
VAR_IN_OUT-Variable
FFBs are often used to read a variable at an input (input variables), to process it and to output the
altered values of the same variable (output variables).
This special type of input/output variable is also called a VAR_IN_OUT variable.

The link between input and output variables is represented by a line in the FFB.
VAR_IN_OUT variable

The following special features are to be noted when using FFBs with VAR_IN_OUT variables.
 All VAR_IN_OUT inputs must be assigned a variable.
 Via graphical links only VAR_IN_OUT outputs with VAR_IN_OUT inputs can be connected.
 Only one graphical link can be connected to a VAR_IN_OUT input/output.
 A combination of variable/address and graphical connections is not possible for VAR_IN_OUT

outputs.
 No literals or constants can be connected to VAR_IN_OUT inputs/outputs.
 No negations can be used on VAR_IN_OUT inputs/outputs.
 Different variables/variable components can be connected to the VAR_IN_OUT input and the

VAR_IN_OUT output. In this case the value of the variables/variable component on the input is
copied to the at the output variables/variable component.
35006144 10/2019 329

Ladder Diagram (LD)
Control Elements

Introduction
Control elements are used for executing jumps within an LD section and for returning from a
subroutine (SRx) or derived function block (DFB) to the main program.
Control elements take up one cell.

Control Elements
The following control elements are available.

Designation Representation Description
Jump When the status of the left link is 1, a jump is made to a label (in the current

section).
To generate an unconditional jump, the jump object must be placed directly
on the left power rail.
To generate a conditional jump, a jump object is placed at the end of a series
of contacts.

Label LABEL: Labels (jump targets) are indicated as text with a colon at the end.
This text is limited to 38 characters and must be unique within the entire
section. The text must conform to general naming conventions.
Jump labels can only be placed in the first cell directly on the power rail.
Note: Jump labels may not "cut through" networks, i.e. an assumed line from
the jump label to the right edge of the section may not be crossed by any
object. This also applies to Boolean links and FFB links.

Return RETURN objects cannot be used in the main program.
 In a DFB, a RETURN object forces the return to the program which called

the DFB.
 The rest of the DFB section containing the RETURN object is not

executed.
 The next sections of the DFB are not executed.

The program which called the DFB will be executed after return from the
DFB.
If the DFB is called by another DFB, the calling DFB will be executed
after return.

 In an SR, a RETURN object forces the return to the program which called
the SR.
 The rest of the SR containing the RETURN object is not executed.

The program which called the SR will be executed after return from the
SR.
330 35006144 10/2019

Ladder Diagram (LD)
Operate Blocks and Compare Blocks

Introduction
In addition to the objects defined in IEC 61131-3, there are several other blocks for executing ST
instructions (see page 463) and ST expressions (see page 463) and for simple compare
operations. These blocks are only available in the LD programming language.

Objects
The following objects are available:

Designation Representation Description
Operate block When the status of the left link is 1, the ST instruction in the block

is executed.
All ST instructions (see page 463) are allowed except the control
instructions:
 (RETURN,
 JUMP,

IF,
 CASE,
 FOR
 etc.)

For operate blocks, the state of the left link is passed to the right
link (regardless of the result of the ST instruction).
A block can contain up to 4096 characters. If not all characters
can be displayed then the beginning of the character sequence
will be followed by suspension points (...).
An operate block takes up 1 line and 4 columns.
Example:

In the example, Instruction1 is executed if In1=1.
Instruction2 is executed if In1=1 and In2=1 (the result of
Instruction1 has no meaning for the execution of
Instruction2). Out1 becomes 1 if In1=1 and In2=1 (the
results of Instruction1 and Instruction2 have no meaning
for the status of Out1).
35006144 10/2019 331

Ladder Diagram (LD)
 Horizontal
Matching Block

Horizontal compare blocks used to execute a compare
expression (<, >, <=, >=, =, <>) in the ST programming language.
(Note: The same functionality is also possible using ST
expressions (see page 463).)
A compare block performs an AND of its left In-pin and the result
of its compare condition and assigns the result of this AND
unconditionally to its right Out-pin.
For example, if the state of the left link is 1 and the result of the
comparison is 1, the state of the right link is 1.
A horizontal matching block can contain up to 4096 characters. If
not all characters can be displayed then the beginning of the
character sequence will be followed by suspension points (...).
A horizontal matching block takes up 1 line and 2 columns.
Example:

In the example, Compare1 is executed if In1=1. Compare2 is
executed if In1=1 , In2=1 a the result of Compare1=1. Out1
becomes 1 if In1=1, In2=1, the result of Compare1=1 and the
result of Compare2=1.

Designation Representation Description
332 35006144 10/2019

Ladder Diagram (LD)
Links

Description
Links are connections between LD objects (contacts, coils and FFBs etc.).
There are 2 different types of links:
 Boolean Links

Boolean links consist of one or more segments linking Boolean objects (contacts, coils) with one
another.
There are different types of Boolean links as well:
 Horizontal Boolean Links

Horizontal Boolean links enable sequential contacts and coil switching.
 Vertical Boolean Links

Vertical Boolean links enable parallel contacts and coil switching.
 FFB Links

FFB connections are a combination of horizontal and vertical segments that connect FFB
inputs/outputs with other objects.

Connections:
35006144 10/2019 333

Ladder Diagram (LD)
General Programming Notes
Attention should be paid to the following general programming notes:
 The data types of the inputs/outputs to be linked must be the same.
 Links between parameters with variable lengths (e.g. ANY_ARRAY_INT) are not allowed.
 Several links can be connected with one output (right-hand side of one contact, one coil or one

FFB output). However, only one link can be connected with an input (left-hand side of one
contact, one coil or one FFB output).

 Unconnected contacts, coils and FFB inputs are specified as "0" by default.
 Links may not be used to create loops since the sequence of execution in this case cannot be

clearly determined in the section. Loops must be created using actual parameters (see Non-
Permitted Loops, page 348).

Notes on Programming Boolean Links
Notes on Programming Boolean Links:
 Overlapping Boolean links with other objects is not permitted.
 The signal flow (power flow) is from left to right for Boolean links. Therefore, backwards links

are not allowed.
 If two Boolean links are crossed, the links are connected automatically. Since crossing Boolean

links is not possible, links are not indicated in any special way.

Notes on Programming FFB Links
Notes on Programming FFB Links:
 At least one side of an FFB link must be connected with an FFB input or output.
 To differentiate them from Boolean links, FFB links are shown with a doubly thick line.
 The signal flow (power flow) in FFB links is from the FFB output to the FFB input, no matter

which direction they are made in. Therefore, backwards links are allowed.
 Only FFB inputs and FFB outputs may be linked to one-another. Linking more than one FFB

outputs together is not possible. That means that no OR connection is possible in LD using FFB
links.

 Overlapping FFB links with other objects is permitted.
 Crossing FFB links is also permitted. Crossed links are indicated by a "broken" link.
334 35006144 10/2019

Ladder Diagram (LD)
 Connection points between more FFB links are shown with a filled circle.

 To avoid links crossing each other, FFB links can also be represented in the form of connectors.
The source and target for the FFB connection are labeled with a name that is unique within the
section.
The connector name has the following structure depending on the type of source object for the
connection:
 For functions: "Function counter/formal parameter" for the source of the connection

 For function blocks: "Instance name/formal parameter" for the source of the connection

 For contacts: "OUT1_sequential number"

Vertical Links
The "Vertical Link" is special. The vertical link serves as a logical OR. With this form of the OR link,
32 inputs (contacts) and 64 outputs (coils, links) are possible.
35006144 10/2019 335

Ladder Diagram (LD)
Text Object

Introduction
Text can be positioned as text objects in the Ladder Diagram (LD). The size of these text objects
depends on the length of the text. The size of the object, depending on the size of the text, can be
extended vertically and horizontally to fill further grid units. Text objects may overlap with other
objects.
336 35006144 10/2019

Ladder Diagram (LD)
Edge Recognition

Introduction
During the edge recognition, a bit is monitored during a transition from 0 -> 1 (positive edge) or
from 1 -> 0 (negative edge).
For this, the value of the bit in the previous cycle is compared to the value of the bit in the current
cycle. In this case, not only the current value, but also the old value, are needed.
Instead of a bit, 2 bits are therefore needed for edge recognition (current value and old value).
Because the data type BOOL only offers one single bit (current value), there is another data type
for edge recognition, EBOOL (expanded BOOL). In addition to edge recognition, the data type
EBOOL provides an option for forcing. It must also be saved whether forcing the bit is enabled or
not.
The data type EBOOL saves the following data:
 the current value of the bit in Value bit
 the old value of the bit in History bit

(the content of the value bit is copied to the History bit at the beginning of each cycle)
 Information whether forcing of the bit is enabled in Force-Bit

(0 = Forcing disabled, 1 = Forcing enabled)

Restrictions for EBOOL

Using an EBOOL variable for contacts to recognize positive (P) or negative (N) edges or with an EF
called RE or FE, you have to adhere to the restrictions described below.
EBOOL with %M not written inside program
An EBOOL variable with a %M address, which is not written inside your program but directly, for
example by an animation table, an operator screen or an HMI, will not work in the expected way.
The edge is TRUE infinitely because the %M is only written one time.

NOTE: To avoid this issue the %M has to be written at the end of the task to update the old value
information.

CAUTION
UNINTENDED EQUIPMENT OPERATION
To perform a good edge detection the %M must be updated at each task cycle. When performing
a unique writing, the edge will be infinite.
Failure to follow these instructions can result in injury or equipment damage.
35006144 10/2019 337

Ladder Diagram (LD)
The old value is only updated, when the %M bit is written, so if you write the bit only one time, the
edge detection will be infinite.

EBOOL with %M written inside program
For an EBOOL variable with a %M address, which is written inside your program, you have to adhere
to the restrictions described below:
 Do not use the bit with a SET or RESET coil. In this case the old value is not updated. So you

can perform an infinite edge.
 Do not write the bit conditionally. A simple logic as

IF NOT %M1 THEN %M1 := TRUE; END_IF leads to an infinite edge, because it is written
only one time.

EBOOL with %I
For an EBOOL variable with a %I address you have to adhere to the restriction described below:
 When using multitasking the test of %I edge must be performed in the task where it is updated.

The use of the edge detection of a %I scheduled in a task of higher priority must be avoided.
Example: If you have a fast task, which updates a %I, do not use a edge detection in the mast
task. Depending on the scheduling you can detect the edge or not.

Recognizing Positive Edges
A contact to recognize positive edges is used to recognize positive edges. With this contact, the
right connection for a program cycle is 1 when the transition of the associated actual parameter (A)
is from 0 to 1 and, at the same time, the status of the left connection is 1. Otherwise, the status of
the right link is 0.
In the example, a positive edge of the variable A is supposed to be recognize and B should
therefore be set for a cycle.

Old Value Current Value Edge Detect Description
0 0 0 state 0 (before writing the bit)
0 1 1 Write 1 in the bit (e.g. by animation table).
0 1 1 If you do not write again, the edge remains infinitely.
1 1 0 Write 1 again in the bit, the old value is updated and

the edge detection is set to 0.
338 35006144 10/2019

Ladder Diagram (LD)
Anytime the value bit of A equals 1 and the history bit equals 0, B is set to 1 for a cycle (cycle 1, 4,
and 9).

Recognizing Negative Edges
A contact to recognize negative edges is used to recognize negative edges. With this contact, the
right connection for a program cycle is 1 when the transition of the associated actual parameter (A)
is from 1 to 0 and, at the same time, the status of the left connection is 1. Otherwise, the status of
the right link is 0.
In the example, a negative edge of the variable A is supposed to be recognize and B should
therefore be set for a cycle.

Anytime the value bit of A equals 0 and the history bit equals 1, B is set to 1 for a cycle (cycle 2 and
8).
35006144 10/2019 339

Ladder Diagram (LD)
Forcing Bits
When forcing bits, the value of the variable determined by the logic will be overwritten by the force
value.
In the example, a negative edge of the variable A is supposed to be recognized and B should
therefore be set for a cycle.

Anytime the value bit or force bit of A equals 0 and the history bit equals 1, B is set to 1 for a cycle
(cycle 1 and 8).
340 35006144 10/2019

Ladder Diagram (LD)
Using BOOL and EBOOL Variables
Edge recognition behavior using BOOL or EBOOL variables types can be different:
 When using a BOOL variable, the system manages the history by allowing edge detection during

the contact execution.
 When using an EBOOL variable, the history bit is updated during the coil execution.

The following examples show the different behavior depending on the variable type.
Variable A is define as BOOL, whenever A is set to 1, %MW1 is incremented by 1.

Variable B is defined as EBOOL, the behavior is different when compared with variable A. While B
is set to 1, %MW2 is incremented by 1 because the history bit is not updated.
35006144 10/2019 341

Ladder Diagram (LD)
Variable C is defined as EBOOL, the behavior is identical than variable A. The history bit is updated.
342 35006144 10/2019

Ladder Diagram (LD)
Forcing of Coils Can Cause the Loss of Edge Recognition
Forcing of coils can cause the loss of edge recognition.
In the example, when A equals 1, B should equal 1, and with a rising edge from A, the coil B will be
set for a cycle.
In this example, the variable B is first assigned to the coil, and then to the link to recognize positive
edges.

At the beginning of the second cycle, the value bit of B equals 0. When forcing B within this cycle,
the force bit and value bit are set to 1. While processing the first line of the logic in the third cycle,
the history bit of the coil (B) will also be set to 1.

Problem:
During edge recognition (comparison of the value bit and the history bit) in the second line of the
logic, no edge is recognized, because due to the updating, the value bit and history bit on line 1 of
B are always identical.

Solution:
35006144 10/2019 343

Ladder Diagram (LD)
In this example, the variable B is first assigned to the link to recognize positive edges and then the
coil.

At the beginning of the second cycle, the value bit of B equals 0. When forcing B within this cycle,
the force bit and value bit are set to 1. While processing the first line of the logic in the third cycle,
the history bit of the link (B) will remain set to 0.

Edge recognition recognizes the difference between value bits and history bit and sets the coil (C)
to 1 for one cycle.

Using Set Coil or Reset Coil Can Cause the Loss of Edge Recognition
Using set coil or reset coil can cause the loss of edge recognition with EBOOL variables.

The variable above the set/reset coil (variable C in the example) is always affected by the value of
the left link.
If the left link is 1, the value bit (variable C in the example) is copied to the history bit and the value
bit is set to 1.
If the left link is 0, the value bit (variable C in the example) is copied to the history bit, but the value
bit is not changed.
This means that whatever value the left link has before the set or reset coil, the history bit is always
updated.
344 35006144 10/2019

Ladder Diagram (LD)
In the example, a positive edge of the variable C should be recognized and set D for a cycle.

Code line Behavior in LD Corresponds to in ST
1 Original situation: C = 0, History bit = 0

A = 1,
B = 1,
C = 1, History bit = 0

IF A AND B
 THEN C := 1;
ELSE C := C;
END_IF;

2

A = 1,
B = 1,
C = 1, History = 1

IF NOT(A) AND NOT(B)
THEN C := 0;
ELSE C := C;
END_IF;

3

C = 1, History = 1
D = 0, as the value bit and history bit of C are identical.
The rising edge of C, shown in code line 1, is not recognized
by the code in line 2, as this forces the history bit to be updated.
(If the condition is FALSE, the present value of C is again
assigned to C, see ELSE statement in code line 2 in ST
example.)

-

35006144 10/2019 345

Ladder Diagram (LD)
Execution Sequence and Signal Flow

Execution Sequence of Networks
The following rules apply to network execution sequences:
 Executing a section is completed network by network based on the object links from above and

below.
 Links may not be used to create loops since the sequence of execution in this case cannot be

clearly determined. Loops must be created using actual parameters (see Loop Planning,
page 348).

 The execution sequence of networks which are only linked by the left power rail, is determined
by the graphical sequence (from top to bottom) in which these are connected to the left power
rail. This does not apply if the sequence is influenced by control elements.

 Processing on a network is ended completely before the processing begins on another network.
 No element of a network is deemed to be processed until the status of all inputs of this element

have been processed.
 Processing on a network is only ended if all outputs on this network have been processed. This

also applies if the network contains one or more control elements.

Signal Flow within a Network
For signal flow within a network (rungs), the following rules apply:
 The signal flow for Boolean links is:
 left to right with horizontal Boolean links and
 from top to bottom with vertical Boolean links.

 The signal flow with FFB links is from the FFB output to the FFB input, regardless of which
direction they are made in.

 An FFB is only processed if all elements (FFB outputs etc.) to which it’s inputs are linked are
processed.

 The execution sequence of FFBs that are linked with various outputs of the same FFB runs from
top to bottom.

 The execution sequence of objects is not influenced by their positions within the network.
 The execution sequence for FFBs is represented as execution number by the FFB.
346 35006144 10/2019

Ladder Diagram (LD)
Priorities
Priorities when defining the signal flow within a section:

Example
Example of the execution sequence of objects in an LD section:

NOTE: The execution numbers for contacts and coils is not shown. They are only shown in the
graphic to provide a better overview.

Priority Rule Description
1 Link Links have the highest priorities in defining the signal flow within an LD

section.
2 Network by

Network
Processing on a network is ended completely before the processing begins
on another network.

3 Output sequence Outputs of the same function block or outputs to vertical links are
processed from top to bottom.

4 Rung by Rung Lowest priority. The execution sequence of networks which are only linked
by the left power rail, is determined by the graphical sequence (from top to
bottom) in which these are connected to the left power rail. (Only applies if
none of the other rules apply).
35006144 10/2019 347

Ladder Diagram (LD)
Loop Planning

Non-Permitted Loops
Creating loops using links alone is not permitted because it is not possible to clearly define the
signal flow (the output of one FFB is the input of the next FFB, and the output of this one is the
input of the first again).
Non-permitted loops via links:

Generating Via an Actual Parameter
This type of logic must be generated using feedback variables so that the signal flow can be
determined.
Feedback variables must be initialized. The initial value is used during the first execution of the
logic. Once they have been executed the initial value is replaced by the actual value.
Pay attention to the two different types of execution sequences (number in brackets after the
instance name) for the two blocks.
Loop generated with an actual parameter: Type 1
348 35006144 10/2019

Ladder Diagram (LD)
Loop generated with an actual parameter: Type 2
35006144 10/2019 349

Ladder Diagram (LD)
Change Execution Sequence

Introduction
The order of execution in networks and the execution order of objects within a network are defined
by a number of rules (see page 346).
In some cases the execution order suggested by the system should be changed.
The procedure for defining/changing the execution sequence of networks is as follows:
 Using Links Instead of Actual Parameters
 Network Positions
The procedure for defining/changing the execution sequence of networks is as follows:
 Positioning of Objects

Original Situation
The following representation shows two networks for which the execution sequences are only
defined by their position within the section, without taking into account that block 0.4/0.5 and
0.7/0.8 require another execution sequence.
350 35006144 10/2019

Ladder Diagram (LD)
Link Instead of Actual Parameter
By using a link instead of a variable the two networks are run in the proper sequence (see also
Original Situation, page 350).
35006144 10/2019 351

Ladder Diagram (LD)
Network Positions
The correct execution sequence can be achieved by changing the position of the networks in the
section (see also Original Situation, page 350).
352 35006144 10/2019

Ladder Diagram (LD)
Positioning of Objects
The position of objects can only have an influence on the execution order if several inputs (left link
of Contacts/Coils, FFB inputs) are linked with the same output of the object "to be called" (right link
of Contacts/Coils, FFB outputs) (see also Original Situation, page 350).
Original situation:

In the first network, block positions 0.1 and 0.2 are switched. In this case (common origins for
both block inputs) the execution sequence of both blocks is switched as well (processed from top
to bottom). The same applies when switching coils C and D in the second network.
35006144 10/2019 353

Ladder Diagram (LD)
In the third network, block positions 0.4 and 0.5 are switched. In this case (different origins for
the block inputs) the execution sequence of the blocks is not switched (processed in the sequence
that the block outputs are called in). The same applies when switching coils G and H in the last
network.
354 35006144 10/2019

EcoStruxure™ Control Expert
 SFC Sequence Language
35006144 10/2019
 SFC Sequence Language

Chapter 12
 SFC Sequence Language

Overview
This chapter describes the SFC sequence language which conforms to IEC 611311.

What Is in This Chapter?
This chapter contains the following sections:

Section Topic Page
12.1 General Information about SFC Sequence Language 356
12.2 Steps and Macro Steps 362
12.3 Actions and Action Sections 370
12.4 Transitions and Transition Sections 376
12.5 Jump 381
12.6 Link 382
12.7 Branches and Merges 383
12.8 Text Objects 386
12.9 Single-Token 387

12.10 Multi-Token 398
35006144 10/2019 355

SFC Sequence Language
General Information about SFC Sequence Language

Section 12.1
General Information about SFC Sequence Language

Overview
This section contains a general overview of the SFC sequence language.

What Is in This Section?
This section contains the following topics:

Topic Page
General Information about SFC Sequence Language 357
Link Rules 361
356 35006144 10/2019

SFC Sequence Language
General Information about SFC Sequence Language

Introduction
The sequence language SFC (Sequential Function Chart), which conforms to IEC 61131-3, is
described in this section.

Structure of a Sequence Controller
IEC conforming sequential control is created in Control Expert from SFC sections (top level),
transition sections and action sections.
These SFC sections are only allowed in the Master Task of the project. SFC sections cannot be
used in other tasks or DFBs.
In Single Token, each SFC section contains exactly one SFC network (sequence).
In Multi-Token, an SFC section can contain one or more independent SFC networks.

Objects
An SFC section provides the following objects for creating a program:
 Step (see page 363)
 Macro Step (embedded sub-step) (see page 366)
 Transition (transition condition) (see page 377)
 Jump (see page 381)
 Link (see page 382)
 Alternative branch (see page 384)
 Alternative junction (see page 384)
 Parallel branch (see page 385)
 Parallel junction (see page 385)
Comments regarding the section logic can be provided using text objects (related topics Text
Object, page 386).
35006144 10/2019 357

SFC Sequence Language
Representation of an SFC Section
Appearance:
358 35006144 10/2019

SFC Sequence Language
Structure of an SFC Section
An SFC section is a "Status Machine", i.e. the status is created by the active step and the
transitions pass on the switch/change behavior. Steps and transitions are linked to one another
through directional links. Two steps can never be directly linked and must always be separated by
a transition. The active signal status processes take place along the directional links and are
triggered by switching a transition. The direction of the chain process follows the directional links
and runs from the end of the preceding step to the top of the next step. Branches are processed
from left to right.
Every step has zero or more actions. A transition condition is necessary for every transition.
The last transition in the chain is always connected to another step in the chain (via a graphic link
or jump symbol) to create a closed loop. Step chains are therefore processed cyclically.

SFCCHART_STATE Variable
When an SFC section is created, it is automatically assigned a variable of data type
SFCCHART_STATE. The variable that is created always has the name of the respective SFC
section.
This variable is used to assign the SFC control blocks to the SFC section to be controlled.

Token Rule
The behavior of an SFC network is greatly affected by the number of tokens selected, i.e. the
number of active steps.
Explicit behavior is possible by using one token (single token). (Parallel branches each with an
active token [step] per branch as a single token). This corresponds to a step chain as defined in
IEC 61131-3).
A step chain with a number of maximum active steps (Multi Token) defined by the user increases
the degree of freedom. This reduces/eliminates the restrictions for enforcing unambiguousness
and non-blocking and must be guaranteed by the user. Step chains with Multi Token do not
conform to IEC 61131-3.
35006144 10/2019 359

SFC Sequence Language
Section Size
 An SFC section consists of a single-page window.
 Because of performance reasons, it is strongly recommended to create less than 100 SFC

sections in a project (macro section are not counted).
 The window has a logical grid of 200 lines and 32 columns.
 Steps, transitions and jumps each require a cell.
 Branches and links do not require their own cells, they are inserted in the respective step or

transition cell.
 A maximum of 1024 steps can be placed per SFC section (including all their macro sections).
 A maximum of 100 steps can be active (Multi Token) per SFC section (including all their macro

sections) .
 A maximum of 64 steps can be set manually at the same time per SFC section (Multi Token).
 A maximum of 20 actions can be assigned to each SFC step.
 The nesting depth of macros, i.e. macro steps within macro steps, is to 8 levels.

IEC Conformity
For a description of the extent to which the SFC programming language conforms to IEC, see IEC
Conformity (see page 565).
360 35006144 10/2019

SFC Sequence Language
Link Rules

Link Rules
The table indicates which object outputs can be linked with which object inputs.

From object output of To object input of
Step Transition

Alternative Branch
Parallel joint

Transition Step
Jump
Parallel Branch
Alternative joint

Alternative Branch Transition
Alternative joint Step

Jump
Parallel Branch
Alternative joint

Parallel Branch Step
Jump
Alternative joint (only with Multi-Token (see page 398))

Parallel joint Transition
Alternative branch (only with Multitoken (see page 398))
Alternative joint
35006144 10/2019 361

SFC Sequence Language
Steps and Macro Steps

Section 12.2
Steps and Macro Steps

Overview
This section describes the step and macro step objects of the SFC sequence language.

What Is in This Section?
This section contains the following topics:

Topic Page
Step 363
Macro Steps and Macro Sections 366
362 35006144 10/2019

SFC Sequence Language
Step

Step Types
The following types of steps exist:

Step Names
When creating a step, it is assigned with a suggested number. The suggested number is structured
as follows S_i_j, whereas i is the (internal) current number of the section and j is the (internal)
current step number in the current section.
You can change the suggested numbers to give you a better overview. Step names (maximum 32
characters) must be unique over the entire project, i.e. no other step, variable or section etc. may
exist with the same name. There are no case distinctions. The step name must correspond with
the standardized name conventions.

Type Representation Description
"Normal" Step A step becomes active when the previous step becomes inactive (a delay

that may be defined must pass) and the upstream transition is satisfied. A
step normally becomes inactive when a delay that may be defined passes
and the downstream transition is satisfied. For a parallel joint, all previous
steps must satisfy these conditions.
Zero or more actions belong to every step. Steps without action are known
as waiting steps.

Initial step The initial status of a sequence string is characterized by the initial step. After
initializing the project or initializing the sequence string, the initial step is
active.
Initial steps are not normally assigned with any actions.
With Single-Token (Conforming with IEC 61131-3) only one initial step is
allowed per sequence.
With Multi-Token, a definable number (0 to 100) of initial steps are possible.

Macro Step See Macro Step, page 366

Input step see Input Step, page 366

Output step see Output Step, page 367
35006144 10/2019 363

SFC Sequence Language
Step Times
Each step can be assigned a minimum supervision time, a maximum supervision time and a delay
time:
 Minimum Supervision Time

The minimum supervision time sets the minimum time for which the step should normally be
active. If the step becomes inactive before this time has elapsed, an error message is
generated. In animation mode, the error is additionally identified by a colored outline (yellow)
around the step object.
If no minimum supervision time or a minimum supervision time of 0 is entered, step supervision
is not carried out.
The error status remains the same until the step becomes active again.

 Maximum Supervision Time
The maximum supervision time specifies the maximum time in which the step should normally
be active. If the step is still active after this time has elapsed, an error message is generated. In
animation mode, the error is additionally identified by a colored outline (pink) around the step
object.
If no maximum supervision time or a maximum supervision time of 0 is entered, step supervision
is not carried out.
The error status remains the same until the step becomes inactive.

 Delay Time
The delay time (step dwell time) sets the minimum time for which the step must be active.

NOTE: The defined times apply for the step only, not for the allocated actions. Individual times can
be defined for these.

Setting the Step Times
The following formula is to be used for defining/determining these times:
Delay time< minimum supervision time< maximum supervision time
There are 2 ways to assign the defined values to a step:
 As a duration literal
 Use of the data structure SFCSTEP_TIMES
364 35006144 10/2019

SFC Sequence Language
SFCSTEP_TIMES Variable
Every step can be implicitly allocated a variable of data type SFCSTEP_TIMES. The elements for
this data structure can be read from and written to (read/write).
The data structure is handled the same as any other data structure, i.e. they can be used in variable
declarations and therefore accessing the entire data structure (e.g. as FFB parameter) is possible.
Structure of the Data Structure:

SFCSTEP_STATE Variable
Every step is implicitly allocated a variable of data type SFCSTEP_STATE. This step variable has
the name of the allocated step. The elements for this data structure can only be read (read only).
You can see the SFCSTEP_STATE variables in the Data Editor. The Comment for a
SFCSTEP_STATE variable is the comment entered as a property of the step itself. Please refer to
chapter Defining the properties of steps (see EcoStruxure™ Control Expert, Operating Modes).
The data structure cannot be used in variable declarations. Therefore, accessing the entire data
structure (e.g. as FFB parameter) is not possible.
Structure of the Data Structure:

Element Name Data type Description
"VarName".delay TIME Delay Time
"VarName".min TIME Minimum Supervision Time
"VarName".max TIME Maximum Supervision Time

Element Name Data type Description
"StepName".t TIME Current dwell time in the step. If the step is deactivated, the value of

this element is retained until the step is activated again.
"StepName".x BOOL 1: Step active

0: Step inactive
"StepName".tminErr BOOL This element is a supplement to IEC 61131-3.

1: Underflow of minimum supervision time
0: No underflow of minimum supervision time
The element is automatically reset in the following cases:
 If the step is activated again
 If the sequence control is reset
 If the command button Reset Time Error is activated

"StepName".tmaxErr BOOL This element is a supplement to IEC 61131-3.
1: Overflow of maximum supervision time
0: No overflow of maximum supervision time
The element is automatically reset in the following cases:
 If the step is exited
 If the sequence control is reset
 If the command button Reset Time Error is activated
35006144 10/2019 365

SFC Sequence Language
Macro Steps and Macro Sections

Macro Step
Macro steps are used for calling macro sections and thus for hierarchical structuring of sequential
controls.
Representation of a Macro Step:

Macro steps have the following properties:
 Macro steps can be positioned in "Sequence Control" sections and in macro sections.
 The number of macro steps is unlimited.
 The nesting depth, i.e. macro steps within macro steps is to 8 levels.
 Each macro step is implicitly allocated a variable of data type SFCSTEP_STATE, see

SFCSTEP_STATE Variable, page 365.
 Macro steps can be allocated a variable of data type SFCSTEP_TIMES, see SFCSTEP_TIMES

Variable, page 365.
 Macro steps can NOT be allocated with actions.
 Each macro step can be replaced with the sequence string in the allocated macro section.
Macro steps are a supplement to IEC 61131-3 and must be enabled explicitly.

Input Step
Every macro section begins with an input step.
Representation of an input step:

Input steps have the following properties:
 Input steps are automatically placed in macro sections by the SFC editor.
 Only 1 individual input step is placed for each macro section.
 An input step cannot be deleted, copied or inserted manually.
 Each input step is implicitly allocated a variable of data type SFCSTEP_STATE, see

SFCSTEP_STATE Variable, page 365.
 Input steps can be allocated a variable of data type SFCSTEP_TIMES, see SFCSTEP_TIMES

Variable, page 365.
 Input steps can be allocated actions.
366 35006144 10/2019

SFC Sequence Language
Output Step
Every macro section ends with an output step.
Representation of an output step:

Output steps have the following properties:
 Output steps are automatically placed in macro sections by the SFC editor.
 Only 1 individual output step is placed for each macro section.
 An output step cannot be deleted, copied or inserted manually.
 Output steps can NOT be allocated with actions.
 Output steps can only be assigned a delay time. Assigning supervision times is not possible,

see Step Times, page 364.

Macro Section
A macro section consists of a single sequence string having principally the same elements as a
"sequence control" section (e.g. steps, initial step[s], macro steps, transitions, branches, joints,
etc.).
Additionally, each macro section contains an input step at the beginning and an output step at the
end.
Each macro step can be replaced with the sequence string in the allocated macro section.
Therefore, macro sections can contain 0, 1 or more initial steps, see also Step Types, page 363.
 Single-Token
 0 Initial steps

are used in macro sections, if there is already an initial step in the higher or lower section.
 1 Initial step

is used in macro sections, if there are no initial steps in the higher or lower section.
 Multi-Token

A maximum of 100 initial steps can be placed per section (including all their macro sections).
35006144 10/2019 367

SFC Sequence Language
Using macro sections:

The name of the macro section is identical to the name of the macro step that it is called from. If
the name of the macro step is changed then the name of the respective macro section is changed
automatically.
A macro section can only be used once.

Macro Step Processing
Macro Step Processing:

Phase Description
1 A macro step is activated if the previous transition condition is TRUE.

At the same time, the input step in the macro section is activated.
2 The sequence string of the macro section is processed.

The macro step remains active as long as at least one step in the macro section is active.
3 If the output step of the macro section is active then the transitions following the macro step

are enabled.
4 The macro step becomes inactive when the output step is activated which causes the following

transition conditions to be enabled and the transition condition to be TRUE. At the same time,
the output step in the macro section is activated.
368 35006144 10/2019

SFC Sequence Language
Step Names
When creating a step, it is assigned with a suggested number.
Meanings of the Suggested Numbers:

You can change the suggested numbers to give you a better overview. Step names (maximum 28
characters for macro step names, maximum 32 characters for step names) must be unique within
the entire project, i.e. no other step, variable or section (with the exception of the name of the macro
section assigned to the macro step) etc. may exist with the same name. There are no case
distinctions. The step name must correspond with the standardized name conventions.
If the name of the macro step is changed then the name of the respective macro section and the
steps within it are changed automatically.
For example If MS_1_1 is renamed to MyStep then the step names in the macro section are
renamed to MyStep_IN, MyStep_1, ..., MyStep_n, MyStep_OUT.

Step Type Suggested Number Description
Macro Step MS_i_j MS = Macro Step

i = (internal) current (sequential) number of the current section
j = (internal) current (sequential) macro step number of the current section

Input step MS_k_l_IN MS = Macro Step
k = (internal) current (sequential) number of the calling section
l = (internal) current (sequential) macro step number of the calling section
IN = Input Step

Output step MS_k_l_OUT MS = Macro Step
k = (internal) current (sequential) number of the calling section
l = (internal) current (sequential) macro step number of the calling section
OUT = Output Step

"Normal" Step
(within a macro
section)

S_k_m S = Step
k = (internal) current (sequential) number of the calling section
m = (internal) current (sequential) step number of the calling section
35006144 10/2019 369

SFC Sequence Language
Actions and Action Sections

Section 12.3
Actions and Action Sections

Overview
This section describes the actions and action sections of the SFC sequence language.

What Is in This Section?
This section contains the following topics:

Topic Page
Action 371
Action Section 373
Qualifier 374
370 35006144 10/2019

SFC Sequence Language
Action

Introduction
Actions have the following properties:
 An action can be a Boolean variable (action variable (see page 371)) or a section (action section

(see page 373)) of programming language FBD, LD, IL or ST.
 A step can be assigned none or several actions. A step which is assigned no action has a

waiting function, i.e. it waits until the assigned transition is completed.
 If more than one action is assigned to a step they are processed in the sequence in which they

are positioned in the action list field.
Exception: Independent of their position in the action list field, actions with the qualifier
(see page 374) P1 are always processed first and actions with the qualifier P0 are processed
last.

 The control of actions is expressed through the use of qualifiers (see page 374).
 A maximum of 20 actions can be assigned to each step.
 The action variable that is assigned to an action can also be used in actions from other steps.
 The action variable can also be used for reading or writing in any other section of the project

(multiple assignment).
 Actions that are assigned an qualifier with duration can only be activated one time.
 Only Boolean variables/addresses or Boolean elements of multi-element variables are allowed

as action variables.
 Actions have unique names.

The name of the action is either the name of the action variable or the name of the action
section.

Action Variable
The following are authorized as action variables:
 Address of data type BOOL

An action can be assigned to a hardware output using an address. In this case, the action can
be used as enable signal for a transition, as input signal in another section and as output signal
for the hardware.

 Simple variable or element of a multi-element variable of data type BOOL
The action can be used as an input signal with assistance from a variable in another section.
 Unlocated Variable

With unlocated variables, the action can be used as enable signal for a transition and as input
signal in another section.

 Located Variable
With located variables the action can be used as an enabling signal for a transition, as an
input signal in another section and as an output signal for the hardware.
35006144 10/2019 371

SFC Sequence Language
Action Names
If an address or a variable is used as an action then that name (e.g. %Q10.4, Variable1) is used
as the action name.
If an action section is used as an action then the section name is used as the action name.
Action names (maximum 32 characters) must be unique over the entire project, i.e. no other
transition, variable or section etc. may exist with the same name. There are no case distinctions.
The action name must correspond with the standardized name conventions.
372 35006144 10/2019

SFC Sequence Language
Action Section

Introduction
An action section can be created for every action. This is a section which contains the logic of the
action and it is automatically linked with the action.

Name of the Action Section
The name of the action section is always identical to the assigned action, see Action Names,
page 372.

Programming Languages
FBD, LD, IL and ST are possible as programming languages for action sections.

Properties of Action Sections
Action sections have the following properties:
 Action sections can have any amount of outputs.
 Subroutine calls are only possible in action sections when Multitoken operation is enabled.

Note: The called subroutines are not affected by the controller of the sequence string, i.e.
 the qualifier assigned to the called action section does not affect the subroutine
 the subroutine also remains active when the called step is deactivated

 No diagnosis functions, diagnosis function blocks or diagnosis procedures may be used in
action sections.

 Action sections can have any amount of networks.
 Action sections belong to the SFC section in which they were defined and can be assigned any

number of actions within this SFC section (including all of their macro sections).
 Action sections which are assigned an qualifier with duration, can only be activated one time.
 Action sections belong to the SFC section that they were defined in. If the respective SFC

section is deleted then all action sections of this SFC section are also deleted automatically.
 Action sections can be called exclusively from actions.
35006144 10/2019 373

SFC Sequence Language
Qualifier

Introduction
Each action that is linked to a step must have a qualifier which defines the control for that action.

Available Qualifiers
The following qualifiers are available:

Qualifier Meaning Description
N / None Not Stored If the step is active then action is 1 and if the step is inactive the action is 0.
R Overriding

reset
The action, which is set in another step with the qualifier S, is reset. The activation of
any action can also be prevented.
Note: Qualifiers are automatically declared as unbuffered. This means that the value
is reset to 0 after stop and cold restart, e.g. when voltage is on/off. Should a buffered
output be required, please use the RS or SR function block from the standard block
library.

S Set (saved) The set action remains active, even when the associated step becomes inactive. The
action only becomes inactive, when it is reset in another step of the current SFC
section, using the qualifier R.
Note: If an action variable is modified outside of the current SFC section, it may no
longer reflect the action's activation state.

Note: A maximum of 100 actions are permitted using the S qualifier per SFC Section.
374 35006144 10/2019

SFC Sequence Language
L Time limited If the step is active, the action is also active. After the process of the time duration,
defined manually for the action, the action returns to 0, even if the step is still active.
The action also becomes 0 if the step is inactive.
Note: For this qualifier, an additional duration of data type TIME must be defined.

D Delayed If the step is active, the internal timer is started and the action becomes 1 after the
process of the time duration, which was defined manually for the action. If the step
becomes inactive after that, the action becomes inactive as well. If the step becomes
inactive before the internal time has elapsed then the action does not become active.
Note: For this qualifier, an additional duration of data type TIME must be defined.

P Pulse If the step becomes active, the action becomes 1 and this remains for one program
cycle, independent of whether or not the step remains active.

DS Delayed and
saved

If the step becomes active, the internal timer is started and the action becomes active
after the process of the manually defined time duration. The action first becomes
inactive again when qualifier R is used for a reset in another step. If the step becomes
inactive before the internal time has elapsed then the action does not become active.
Note: For this qualifier, an additional duration of data type TIME must be defined.

P1 Pulse (rising
edge)

If the step becomes active (0->1-edge), the action becomes 1 and this remains for
one program cycle, independent of whether or not the step remains active.
Note: Independent of their position in the action list field, actions with the qualifier P1
are always processed first. More information can be found in the Action
(see page 371) of the SFC sequence language.

P0 Pulse (falling
edge)

If the step becomes inactive (1->0-edge), the action becomes 1 and this remains for
one program cycle.
Note: Independent of their position in the action list field, actions with the qualifier P0
are always processed last. More information can be found in the Action
(see page 371) of the SFC sequence language.

Qualifier Meaning Description
35006144 10/2019 375

SFC Sequence Language
Transitions and Transition Sections

Section 12.4
Transitions and Transition Sections

Overview
This section describes the transition objects and transition sections of the SFC sequence
language.

What Is in This Section?
This section contains the following topics:

Topic Page
Transition 377
Transition Section 379
376 35006144 10/2019

SFC Sequence Language
Transition

Introduction
A transition provides the condition through which the checks of one or more pre-transition steps
pass on one or more consecutive steps along the corresponding link.

Transition Condition
Every transition is allocated with a transition condition of data type BOOL.

The following are authorized as transaction conditions:
 an address (input or output)
 a variable (input or output)
 a Literal or
 a Transition Section (see page 379)
The type of transition condition determines the position of the name.

Transition Name
If an address or a variable is used as a transition condition then the transition name is defined with
that name (e.g. %I10.4, Variable1).

If a transition section is used as a transition condition then the section name is used as the
transition name.
Transition names (maximum 32 characters) must be unique over the entire project, i.e. no other
transition, variable or section (with the exception of the assigned transition section) etc., may exist
with the same name. There are no case distinctions. The transition name must correspond with the
standardized name conventions.

Transition Condition Position of the Name
 Address
 Variable

 Literal

 Transition Section
35006144 10/2019 377

SFC Sequence Language
Enabling a Transition
A transition is enabled if the steps immediately preceding it are active. Transitions whose
immediately preceding steps are not active are not normally analyzed.
NOTE: If no transition condition is defined, the transition will never be active.

Triggering a Transition
A transition is triggered when the transition is enabled and the associated transition conditions are
satisfied.
Triggering a transition leads to the disabling (resetting) of all immediately preceding steps that are
linked to the transition, followed by the activation of all immediately following steps.

Trigger Time for a Transition
The transition trigger time (switching time) can theoretically be as short as possible, but can never
be zero. The transition trigger time lasts at least the duration of a program cycle.
378 35006144 10/2019

SFC Sequence Language
Transition Section

Introduction
For every transition, a transition section can be created. This is a section containing the logic of the
transition condition and it is automatically linked with the transition.

Name of Transition Section
The name of the transition section is always identical to the assigned transition, see Transition
Name, page 377.

Programming Languages
FBD, LD, IL and ST are possible as programming languages for transition sections.
Suggested Networks for Transition Section:

Language Suggested Network Description
FBD The suggested network contains an AND block with 2 inputs for

which the output is linked with a variable having the name of the
transition section.
The suggested block can either be linked or it can be deleted if
desired.

LD The suggested network contains a coil which is linked with a
variable having the name of the transition section.
The suggested coil can either be linked or it can be deleted if
desired.

IL - The suggested network is empty.
The content may only be created of Boolean logic. The
assignment of the logic result on the output (the transition variable)
is done automatically, i.e. the memory assignment ST is not
allowed.
Example:
LD A
AND B
35006144 10/2019 379

SFC Sequence Language
Properties of Transition Sections
Transition sections have the following properties:
 Transition sections only have one single output (transition variable), whose data type is BOOL.

The name of these variables are identical to the names of the transition sections.
 The transition variable can only be used once in written form.
 The transition variable can be read in any position within the project.
 Only functions can be used, function blocks or procedures cannot.
 Only one coil may be used in LD.
 There is only one network, i.e. all functions used are linked with each other either directly or

indirectly.
 Transition sections can only be used once.
 Transition sections belong to the SFC section in which they were defined. If the respective SFC

section is deleted then all transition sections of this SFC section are also deleted automatically.
 Transition sections can be called exclusively from transitions.

ST - The suggested network is empty.
The content may only be created of Boolean logic in the form of a
(nested) expression. The assignment of the logic result on the
output (the transition variable) is done automatically, i.e. the
instruction assignment := is not allowed. The expression is not
terminated by a semicolon (;).
Example:
A AND B
or
A AND (WORD_TO_BOOL (B))

Language Suggested Network Description
380 35006144 10/2019

SFC Sequence Language
Jump

Section 12.5
Jump

Jump

General
Jumps are used to indicate directional links that are not represented in their full length.
Representation of a jump:

Properties of Jumps
Jumps have the following properties:
 More than one jump may have the same target step.
 In accordance with IEC 61131-3, jumps into a parallel sequence (see page 385) or out of a

parallel sequence are not possible.
If it should also be used again then it must be enabled explicitly.

 With jumps, there is a difference between a Sequence Jump (see page 390) and a Sequence
Loop (see page 391).

 The jump target is indicated by the jump target symbol (>).

Jump Name
Jumps do not actually have their own names. Instead, the name of the target step (jump target) is
shown inside of the jump symbol.
35006144 10/2019 381

SFC Sequence Language
Link

Section 12.6
Link

Link

Introduction
Links connect steps and transitions, transitions and steps etc.

Properties of Links
Links have the following properties:
 Links between objects of the same type (step with step, transition with transition, etc.) are not

possible
 Links are possible between:
 unlinked object outputs and
 unlinked or linked step inputs

(i.e. multiple step inputs can be linked)
 Overlapping links and other SFC objects (step, transition, jump, etc.) is not possible
 Overlapping links and links is possible
 Crossing links with links is possible and is indicated by a "broken" link:

 Links consist of vertical and horizontal segments
 Standard signal flow in a sequence string is from top to bottom. To create a loop however, links

can be made from below to a step above. This applies to links from transitions, parallel branches
or alternative joints to a step. In these cases, the direction of the link is indicated with an arrow
symbol:

 With links, there is a difference between a String Jump (see page 390) and a String Loop
(see page 391)
382 35006144 10/2019

SFC Sequence Language
Branches and Merges

Section 12.7
Branches and Merges

Overview
This section describes the branch and merge objects of the SFC sequence language.

What Is in This Section?
This section contains the following topics:

Topic Page
Alternative Branches and Alternative Joints 384
Parallel Branch and Parallel Joint 385
35006144 10/2019 383

SFC Sequence Language
Alternative Branches and Alternative Joints

Introduction
The alternative branch offers the possibility to program branches conditionally in the control flow
of the SFC structure.
With alternative branches, as many transitions follow a step under the horizontal line as there are
different processes.
All alternative branches are run together into a single branch again with alternative joints or Jumps
(see page 381) where they are processed further.

Example of an Alternative Sequence
Example of an Alternative Sequence

Properties of an Alternative Sequence
The properties of an alternative sequence mainly depend on whether the sequence control is
operating in single token or multi-token mode.
See
 Properties of an Alternative Sequence in Single Token (see page 389)
 Properties of an Alternative Sequence in Multi Token (see page 400)
384 35006144 10/2019

SFC Sequence Language
Parallel Branch and Parallel Joint

Introduction
With parallel branches, switching a single transition leads to a parallel activation of more than one
(maximum 32) step (branches). Execution is from left to right. After this common activation, the
individual branches are processed independently from one another.
All parallel branches are grouped using a parallel joint according to IEC 61131-1. The transition
following a parallel joint is evaluated when all the immediately preceding steps of the parallel joint
have been set.
Combining a parallel branch with an alternative joint is only possible in Multi-Token (see page 403)
operation.

Example of a Parallel Sequence
Example of a Parallel Sequence

Properties of a Parallel Sequence
see
 Properties of a Parallel Sequence in Single Token (see page 389)
 Properties of a Parallel Sequence in Multi-Token (see page 400)
35006144 10/2019 385

SFC Sequence Language
Text Objects

Section 12.8
Text Objects

Text Object

Introduction
Text can be positioned in the form of text objects using SFC sequence language. The size of these
text objects depends on the length of the text. This text object is at least the size of a cell and can
be vertically and horizontally enlarged to other cells according to the size of the text. Text objects
can overlap with other SFC objects.
386 35006144 10/2019

SFC Sequence Language
Single-Token

Section 12.9
Single-Token

Overview
This section describes the "Single-Token" operating mode for sequence controls.

What Is in This Section?
This section contains the following topics:

Topic Page
Execution Sequence Single-Token 388
Alternative String 389
Sequence Jumps and Sequence Loops 390
Parallel Strings 393
Asymmetric Parallel String Selection 395
35006144 10/2019 387

SFC Sequence Language
Execution Sequence Single-Token

Description
The following rules apply for single token:
 The original situation is defined by the initial step. The sequence string contains 1 initial step

only.
 Only one step is ever active in the sequence string. The only exceptions are parallel branches

in which one step is active per branch.
 The active signal status processes take place along the directional links, triggered by switching

one or more transitions. The direction of the string process follows the directional links and runs
from the under side of the predecessor step to the top side of the successive step.

 A transition is enabled if the steps immediately preceding it are active. Transitions whose
immediately preceding steps are not active are not normally analyzed.

 A transition is triggered when the transition is enabled and the associated transition conditions
are satisfied.

 Triggering a transition leads to the disabling (resetting) of all immediately preceding steps that
are linked to the transition, followed by the activation of all immediately following steps.

 If more than one transition condition in a row of sequential steps has been satisfied then one
step is processed per cycle.

 Steps cannot be activated or deactivated by other non-SFC sections.
 The use of macro steps is possible.
 Only one branch is ever active in alternative branches. The branch to be run is determined by

the result of the transition conditions of the transitions that follow the alternative branch. If a
transition condition is satisfied, the remaining transitions are no longer processed The branch
with the satisfied transition is activated. This gives rise to a left to right priority for branches. All
alternative branches are combined at the end by an alternative joint or jumps.

 With parallel branches, switching a single transition leads to the activation of more than one step
(branch). After this common activation, the individual branches are processed independent of
one another. All parallel branches are combined at the end by a parallel joint. Jumps into a
parallel branch or out of a parallel branch are not possible.
388 35006144 10/2019

SFC Sequence Language
Alternative String

Alternative Strings
According to IEC 61131-3, only one switch (1-off-n-select) can be made from the transitions. The
branch to be run is determined by the result of the transition conditions of the transitions that follow
the alternative branch. Branch transitions are processed from left to right. If a transition condition
is satisfied, the remaining transitions are no longer processed The branch with the satisfied
transition is activated. This results in a left to right priority for branches.
If none of the transitions are switched, the step that is currently set remains set.
Alternative Strings:

If... Then
If S_5_10 is active and transition condition a is true
(independent of b),

then a sequence is run from S_5_10 to S_5_11.

If S_5_10 is active and transition condition b is true and a
is false,

then a sequence is run from S_5_10 to S_5_12.
35006144 10/2019 389

SFC Sequence Language
Sequence Jumps and Sequence Loops

Sequence Jump
A sequence jump is a special type of alternative branch that can be used to skip several steps of
a sequence.
A sequence jump can be made with jumps or with links.
Sequence jump:

If... Then
If transition condition a is true, then a sequence is run from S_5_10 to S_5_11, S_5_12

and S_5_13.

If transition condition b is true, then a jump is made from S_5_10 directly to S_5_13.

If transition condition e is true, then a sequence is run from S_5_10 to S_5_14 and
S_5_13.
390 35006144 10/2019

SFC Sequence Language
Sequence Loop
A sequence loop is a special type of alternative branch with which one or more branches lead back
to a previous step.
A sequence loop can be made with jumps or with links.
Sequence loop:

If... Then
If transition condition a is true, then a sequence runs from S_1_11 to S_1_12.

If transition condition b is true, then a sequence runs from S_1_12 to S_1_13.

If transition condition b is false and c is true, then a sequence runs from S_1_12 to S_1_14.

If transition condition f is true, then a jump is made from S_1_14 back to S_1_12.

The loop from S_1_12 by means of transition conditions c and f back to S_1_12 is repeated until transition condition
b is true or c is false and d is true.

If transition conditions b and c are false and d is true, then a jump is made from S_1_12 directly back to
S_1_11.

The loop from S_1_11 to S_1_12 and back to S_1_11 via transition conditions a and d is repeated until transition
condition b or c is true.
35006144 10/2019 391

SFC Sequence Language
Infinite sequence loops are not permitted within an alternative sequence.
Infinite sequence loops:

If... Then
If transition condition b is true, then a sequence runs from S_1_1 to S_1_3.

If transition condition e is true, then a jump is made to S_1_4.

If transition condition f is true, then a jump is made to S_1_3.

The loop from S_1_3 via transition condition e, to S_1_4 via transition condition f and a jump back to S_1_3 again,
is now repeated infinitely.
392 35006144 10/2019

SFC Sequence Language
Parallel Strings

Parallel Strings
With parallel branches, switching a single transition leads to a parallel activation of more than one
(maximum 32) steps (branches). This applies with Single-Token as well as with Multi-Token.
Processing Parallel Strings:

If... Then
If S_5_10 is active and transition condition a, which
belongs to the common transition, is also true,

then a sequence runs from S_5_10 to S_5_11, S_5_12
and S_5_13.

If steps S_5_11, S_5_12 and S_5_13 are activated, then the strings run independently of one another.

If S_5_14, S_5_15 and S_5_16 are active at the same
time and transition condition e, which belongs to the
common transition, is true,

then a sequence is run from S_5_14, S_5_15 and
S_5_16 to S_5_17.
35006144 10/2019 393

SFC Sequence Language
Using an Alternative Branch in a Parallel String
If a single alternative branch is used in a parallel string, it leads to blocking the string with Single-
Token.
Using an Alternative Branch in a Parallel String:

If... Then
If transition condition a is true, then a sequence is run to S_7_1 and S_7_2.

If steps S_7_1 and S_7_2 are activated, then the strings run independently of one another.

If transition condition d is true, then a sequence runs to S_7_5.

If transition condition b is true and c is false, then a sequence runs to S_7_3.

Since S_7_3, S_7_4 and S_7_5 are linked with a parallel merge, no sequence can follow to S_7_6 because S_7_3
and S_7_4 can never be active at the same time.
(Either S_7_3 is activated with transition condition b or S_7_4 with transition condition c, never both at the same time.)
Therefore S_7_3, S_7_4 and S_7_5 can never be active at the same time either. The string is blocked.
The same problem occurs if transition condition b is false and c is true when entering the alternative branch.
394 35006144 10/2019

SFC Sequence Language
Asymmetric Parallel String Selection

Introduction
According to IEC 61131-3, a parallel branch must always be terminated with a parallel merge. The
number of parallel branches must not coincide with the number of parallel merges however.

Greater Amount of Merges
String with 1 Parallel Branch and 2 Parallel Merges:

If... Then
If transition condition a is true, then a sequence runs to S_19_2, S_19_3 and S_19_4.

If steps S_19_2, S_19_3 and S_19_4 are activated, then the strings run independently of one another.

If transition condition b is true, then a sequence runs to S_19_5.

If steps S_19_2 and S_19_5 are active and transition
condition c, is true,

then the parallel string is departed.
35006144 10/2019 395

SFC Sequence Language
Greater Amount of Branches
String with 2 Parallel Branches and 1 Parallel Merge:

If... Then
If transition condition a is true, then a sequence runs to S_19_2 and S_19_3.

If steps S_19_2 and S_19_3 are activated, then the strings run independently of one another.

If transition condition b is true, then a sequence runs to S_19_4 and S_19_5.

If steps S_19_4 and S_19_5 are activated, then the strings run independently of one another.

If steps S_19_2, S_19_4 and S_19_5 are active and
transition condition c is true,

then the parallel string is departed.
396 35006144 10/2019

SFC Sequence Language
Nested Parallel Strings
Nested Parallel Strings:

If... Then
If transition condition a is true, then a sequence runs to S_8_10 and S_8_11.

If transition condition b is true, then a sequence runs to S_8_12 and S_8_13.

If transition condition c is true, then a sequence runs to S_8_14, S_8_15 and S_8_16.

If steps S_8_13 and S_8_14 are active and transition
condition d, is true,

then a sequence runs to S_8_17.

If steps S_8_12 and S_8_17 are active and transition
condition e, is true,

then a sequence runs to S_8_18.

... ...
35006144 10/2019 397

SFC Sequence Language
Multi-Token

Section 12.10
Multi-Token

Overview
This section describes the "Multi-Token" operating mode for sequence controls.

What Is in This Section?
This section contains the following topics:

Topic Page
Multi-Token Execution Sequence 399
Alternative String 400
Parallel Strings 403
Jump into a Parallel String 407
Jump out of a Parallel String 408
398 35006144 10/2019

SFC Sequence Language
Multi-Token Execution Sequence

Description
The following rules apply for Multi-Token:
 The original situation is defined in a number of initial steps (0 to 100) which can be defined.
 A number of steps which can be freely defined can be active at the same time in a sequence

string.
 The active signal status processes take place along the directional links, triggered by switching

one or more transitions. The direction of the string process follows the directional links and runs
from the under side of the predecessor step to the top side of the successive step.

 A transition is enabled if the steps immediately preceding it are active. Transitions whose
immediately preceding steps are not active are not analyzed.

 A transition is triggered when the transition is enabled and the associated transition conditions
are satisfied.

 Triggering a transition leads to the disabling (resetting) of all immediately preceding steps that
are linked to the transition, followed by the activation of all immediately following steps.

 If more than one transition condition in a row of sequential steps has been satisfied then one
step is processed per cycle.

 Steps and macro steps can be activated or deactivated by other non-SFC sections or by user
operations.

 If an active step is activated and deactivated at the same time then the step remains active.
 The use of macro steps is possible. Whereas the macro step section can also contain initial

steps.
 More than one branch can be active with alternative branches. The branches to be run are

determined by the result of the transition conditions of the transitions that follow the alternative
branch. Branch transitions are processed in parallel. The branches with satisfied transitions are
activated. All alternative branches do not have to be combined at the end by an alternative joint
or jumps.

 If jumps are to be made into a parallel branch or out of a parallel branch then this option can be
enabled. All parallel branches do not have to be combined at the end by a parallel joint in this
case.

 Subroutine calls be used in an action section.
 Multiple tokens can be created with:
 Multiple initial steps
 Alternative or parallel branches that are not terminated
 Jumps in combination with alternative and parallel strings
 Activation of steps using the SFC control block SETSTEP from a non -SFC section or with

SFC control instructions
 Tokens can be ended with:
 Simultaneous meeting of two or more tokens in a step
 Deactivation of steps using the SFC control block RESETSTEP from a non -SFC section or

with SFC control instructions
35006144 10/2019 399

SFC Sequence Language
Alternative String

Alternative Strings
The user can define the behavior for the evaluation of transition conditions in alternative branches
with Multi-Token.
The following are possible:
 Processing is from left to right with a stop after the first active transition (1-off-n-select). This

corresponds with the behavior of alternative strings with Single-Token (see page 389).
 Parallel processing of all transitions of the alternative branch (x-off-n-select)

x-off-n-select
With Multi-Token, more than one parallel switch can be made from the transitions (1-off-n-select).
The branches to be run are determined by the result of the transition conditions of the transitions
that follow the alternative branch. The transitions of the branches are all processed. All branches
with satisfied transitions are activated.
If none of the transitions are switched, the step that is currently set remains set.
x-off-n-select:

If... Then
If S_5_10 is active and transition condition a is true and b
is false,

then a sequence is run from S_5_10 to S_5_11.

If S_5_10 is active and transition condition a is false and
b is true,

then a sequence is run from S_5_10 to S_5_12.
400 35006144 10/2019

SFC Sequence Language
If alternative branches should only be switched exclusively in this mode of operation, then this must
be defined explicitly with the transition logic.
Example:

If S_5_10 is active and transition conditions a and b are
true,

then a sequence is run from S_5_10 to S_5_11 and
S_5_12.

A second token is created by the parallel activation of the two alternative branches. These two tokens are now running
parallel to one another, i.e. S_5_11 and S_5_12 are active at the same time.

Token 1 (S_5_11) Token 2 (S_5_12)
If... Then If... Then
If the transition condition c is
true,

then a sequence is run
from S_5_11 to
S_5_13.

If transition condition d is
true,

then a sequence is run from
S_5_12 to S_5_13.

If S_5_13 is still active (token 1) because of the activation of transition condition c, then token 2 is ended and the string
will be further processed as Single-Token. If S_5_13 is no longer active (token 1), then it is reactivated by token 2 and
both tokens continue running parallel (Multi-Token).
35006144 10/2019 401

SFC Sequence Language
Terminating an Alternative Branch with a Parallel Merge
If a parallel merge is used to terminate an alternative branch, it may block the string.
Terminating an Alternative Branch with a Parallel Merge:

If... Then
If transition condition a is true and b is false, then a sequence runs to S_6_1.

Since S_6_1 and S_6_2 are linked by a parallel merge, the branch cannot be departed because S_6_1 and S_6_2
can never be active at the same time.
(Either S_6_1 is activated with transition condition a or S_6_2 with transition condition b.)
Therefore S_6_1 and S_6_2 can never be active at the same time either. The string is blocked.
This block can be removed, for example, by a second timed token that runs via transition b.
402 35006144 10/2019

SFC Sequence Language
Parallel Strings

Parallel Strings
With parallel branches, switching a single transition leads to a parallel activation of more than one
(maximum 32) steps (branches). This applies with Single-Token as well as with Multi-Token
Processing Parallel Strings:

If... Then
If S_5_10 is active and transition condition a, which
belongs to the common transition, is also true,

then a sequence runs from S_5_10 to S_5_11, S_5_12
and S_5_13.

If steps S_5_11, S_5_12 and S_5_13 are activated, then the strings run independently of one another.

If S_5_14, S_5_15 and S_5_16 are active at the same
time and transition condition e, which belongs to the
common transition, is true,

then a sequence is run from S_5_14, S_5_15 and
S_5_16 to S_5_17.
35006144 10/2019 403

SFC Sequence Language
Terminating a Parallel Branch with an Alternative Merge
Terminating a parallel branch can also be done with an alternative merge instead of a parallel
merge with Multi-Token.
Terminating a Parallel String with an Alternative Branch (variation 1):

If... Then
If the transition condition a is true, then a sequence runs to S_5_1 and S_5_2.

If steps S_5_1 and S_5_2 are activated, then the strings run independently of one another.

If transition condition b is true and c is false, then a sequence runs to S_5_3.

A second token is created by the sequence running on the alternative merge out of the parallel string. The two tokens
are running parallel to one another, i.e. S_5_2 and S_5_3 are active at the same time.

Token 1 (S_5_3) Token 2 (S_5_2)
If... Then If... Then
Step S_5_3 is active. Step S_5_2 is active.

If the transition condition c
is true,

then a sequence runs to
S_5_3.

If S_5_3 is still active (token 1) then token 2 is ended and the string is further processed as Single-Token.
If S_5_3 is no longer active (token 1), then it is reactivated by token 2 and both tokens continue running parallel (Multi-
Token).
404 35006144 10/2019

SFC Sequence Language
Terminating a Parallel String with an Alternative Branch (variation 2):

If... Then
If the transition condition a is true, then a sequence runs to S_5_1 and S_5_2.

A second token is created by the sequence running on the alternative merge out of the parallel string. These two
tokens are now running parallel to one another, i.e. S_5_1 and S_5_2 are active at the same time.

Token 1 (S_5_2) Token 2 (S_5_1)
If... Then If... Then
Step S_5_2 is active. Step S_5_1 is active.

If transition condition b is
true,

then a sequence runs to
S_5_2.

If S_5_2 is still active (token 1) then token 2 is ended and the string is further processed as Single-Token.
If S_5_2 is no longer active (token 1), then it is reactivated by token 2 and both tokens continue running parallel (Multi-
Token).
35006144 10/2019 405

SFC Sequence Language
Using an Alternative Branch in a Parallel String
If one single alternative branch is used in a parallel string, it may block the string.
Using an Alternative Branch in a Parallel String:

If... Then
If transition condition a is true, then a sequence is run to S_7_1 and S_7_2.

If steps S_7_1 and S_7_2 are activated, then the strings run independently of one another.

If transition condition d is true, then a sequence runs to S_7_5.

If transition condition b is true, then a sequence runs to S_7_3.

Since S_7_3, S_7_4 and S_7_5 are linked by a parallel merge, the parallel string cannot be departed because S_7_3
and S_7_4 can never be active at the same time.
(Either S_7_3 is activated with transition condition b or S_7_4 with transition condition c.)
Therefore S_7_3, S_7_4 and S_7_5 cannot be active at the same time either. The string is blocked.
This block can be removed for example, by a second timed token that runs via transition c.
406 35006144 10/2019

SFC Sequence Language
Jump into a Parallel String

Description
The ability to jump into a parallel string or out of a parallel string can be enabled optionally with
multi-token
A jump into a parallel string does not activate all branches. Since the transition after the parallel
joint is only evaluated if all steps which directly precede the transition are set, the parallel string
can no longer be departed, the string is blocking.

Jump into a Parallel String
Jump into a Parallel String

If... Then
If the transition condition a is true, then a sequence runs to S_1_1 and S_1_2.

If steps S_1_1 and S_1_2 are activated, then the strings run independently of one another.

If S_1_2 is active and transition condition b, is true, then a sequence runs from S_1_2 to S_1_3.

If S_1_1 and S_1_3 are active and transition condition c,
which belongs to the common transition, is true,

then a sequence runs from S_1_1 and S_1_3 to a jump to
S_1_1.

If S_1_1 is activated by the jump, then only the branch from S_1_1 is active. The branch
from S_1_2 is not active.

Since S_1_1 and S_1_3 are not active at the same time, the string cannot continue. The string is blocked.
This block can removed by e.g. a second timed token that is set to reactivate step S_1_2.
35006144 10/2019 407

SFC Sequence Language
Jump out of a Parallel String

Introduction
The ability to jump into a parallel string or out of a parallel string can be enabled optionally with
multi-token
Extra tokens are generated in all cases.

Jump out of a Parallel String
Jump out of a Parallel String:

If... Then
If the transition condition a is true and b is false, then a sequence runs to S_2_1 and S_2_2.

If steps S_2_1 and S_2_2 are activated, then the strings run independently of one another.

If the transition condition c is true, then a jump is made to S_2_3.

A second token is created by the jump out of the parallel string. Both tokens are running parallel to one another, i.e.
S_2_1 and S_2_3 are active at the same time.
408 35006144 10/2019

SFC Sequence Language
Jump Between Two Branches of a Parallel String
Jump Between Two Branches of a Parallel String:

Token 1 (S_2_1) Token 2 (S_2_3)
If... Then If... Then
If the transition condition e is
true,

then a sequence runs
to S_2_5.

If transition condition d is
true,

then a sequence runs to
S_2_4.

If transition condition f is
true,

then a sequence runs to
S_2_5.

If S_2_5 is still active (token 1) because of the activation of transition condition e, then token 2 is ended and the string
will be further processed as Single-Token.
If S_2_5 is no longer active (token 1), then it is reactivated by token 2 and both tokens continue running parallel (Multi-
Token).

If... Then
If the transition condition a is true, then a sequence runs to S_4_1 and S_4_2.

If steps S_4_1 and S_4_2 are activated, then the strings run independently of one another.

If transition condition b is true, then a sequence runs to S_4_3.

If the transition condition c is true, then a jump is made to S_4_1.

A second token is created by the jump out of a branch string. Both tokens are running parallel to one another, i.e.
S_4_3 and S_4_1 are active at the same time.
35006144 10/2019 409

SFC Sequence Language
Leaving a Parallel String with an Alternative Branch
Leaving a Parallel String with an Alternative Branch:

Token 1 (S_4_3) Token 2 (S_4_1)
If... Then If... Then
Step S_4_3 is processed Step S_4_1 is processed

If transition condition b is
true,

then a sequence runs to
S_4_3.

If step S_4_3 is still active (token 1) during the activation by token 2 then token 2 is ended and the string will continue
to be processed as Single-Token.
If step S_4_3 is no longer active (token 1) because of the activation by token 2 , then it is reactivated by token 2 and
both tokens continue running parallel (Multi-Token).
In both cases, true transition condition d causes the parallel string to be left.
410 35006144 10/2019

SFC Sequence Language
If... Then
If the transition condition a is true, then a sequence runs to S_3_1 and S_3_2.

If steps S_3_1 and S_3_2 are activated, then the strings run independently of one another.

If transition condition b is false and c is true, then a sequence runs to S_3_5.

A second token is created by the sequence running on the alternative branch out of the parallel string. Both tokens
are running parallel to one another, i.e. S_3_1 and S_3_5 are active at the same time.

Token 1 (S_3_1) Token 2 (S_3_5)
If... Then If... Then
Since S_3_4 cannot become active, S_3_1 remains
(token 1) active.

If transition condition d is
true,

then a sequence runs to
S_3_6.

If transition condition a is true then a sequence runs to S_3_1 and S_3_2. This ends token 2 and the string is again
processed as Single-Token.
If the transition condition a is true,
then a sequence runs to S_3_1 and S_3_2.

If transition condition b is
true and c is false,

then a sequence runs to
S_3_4.

Since S_3_4 cannot become active, S_3_1 remains (token 1) active until a sequence appears on S_3_2 (token 2)
and the transition is b.
If S_4_4 is no longer active (token 1), then it is reactivated by token 2 and both tokens continue running parallel (Multi-
Token).
(Merging the two tokens can also be done in S_4_3.)
35006144 10/2019 411

SFC Sequence Language

412 35006144 10/2019

EcoStruxure™ Control Expert
Instruction List (IL)
35006144 10/2019
Instruction List (IL)

Chapter 13
Instruction List (IL)

Overview
This chapter describes the programming language instruction list IL which conforms to IEC 61131.

What Is in This Chapter?
This chapter contains the following sections:

Section Topic Page
13.1 General Information about the IL Instruction List 414
13.2 Calling Elementary Functions, Elementary Function Blocks, Derived Function

Blocks and Procedures
436
35006144 10/2019 413

Instruction List (IL)
General Information about the IL Instruction List

Section 13.1
General Information about the IL Instruction List

Overview
This section contains a general overview of the IL instruction list.

What Is in This Section?
This section contains the following topics:

Topic Page
General Information about the IL Instruction List 415
Operands 419
Modifier 421
Operators 423
Subroutine Call 432
Labels and Jumps 433
Comment 435
414 35006144 10/2019

Instruction List (IL)
General Information about the IL Instruction List

Introduction
Using the Instruction list programming language (IL), you can call function blocks and functions
conditionally or unconditionally, perform assignments and make jumps conditionally or
unconditionally within a section.

Instructions
An instruction list is composed of a series of instructions.
Each instruction begins on a new line and consists of:
 an Operator (see page 423),
 if necessary with a Modifier (see page 421) and
 if necessary one or more Operands (see page 419)
Should several operands be used, they are separated by commas. It is possible for a Label
(see page 433) to be in front of the instruction. This label is followed by a colon. A Comment
(see page 435) can follow the instruction.
Example:
35006144 10/2019 415

Instruction List (IL)
Structure of the Programming Language
IL is a so-called accumulator orientated language, i.e. each instruction uses or alters the current
content of the accumulator (a form of internal cache). IEC 61131 refers to this accumulator as the
"result".
For this reason, an instruction list should always begin with the LD operand ("Load in accumulator
command").
Example of an addition:

Compare operations likewise always refer to the accumulator. The Boolean result of the
comparison is stored in the accumulator and therefore becomes the current accumulator content.
Example of a comparison:

Section Size
The length of an instruction line is limited to 300 characters.
The length of an IL section is not limited within the programming environment. The length of an IL
section is usually limited by the size of the PLC memory.
NOTE: There is no size limitation for section, but sometime when using a large amount of literal
assignments or some specific instructions, a section can generate a Code generation failure during
an application build. Then the solution is to split the section in two or more sections to build the
application.

Command Meaning
LD 10 Load the value 10 into the accumulator.
ADD 25 "25" is added to the contents of the accumulator.
ST A The result is stored in the variable A.

The content of the variable A and the accumulator is now 35. Any further
instruction will work with accumulator contents "35" if it does not begin with LD.

Command Meaning
LD B The value B is loaded into the accumulator.
GT 10 10 is compared with the contents of the accumulator.
ST A The result of the comparison is stored in the variable A.

If B is less than or equal to 10, the value of both variable A and the
accumulator content is 0 (FALSE). If B is greater than 10, the value of both
variable A and the accumulator content is 1 (TRUE).
416 35006144 10/2019

Instruction List (IL)
Syntax
Identifiers and Keywords are not case sensitive.
Spaces and tabs have no influence on the syntax and can be used as and when required,
Exception: Not allowed - spaces and tabs
 keywords
 literals
 values
 identifiers
 variables and
 limiter combinations [e.g. (* for comments)]

Execution Sequence
Instructions are executed line by line, from top to bottom. This sequence can be altered with the
use of parentheses.
If, for example, A, B, C and D have the values 1, 2, 3 and 4, and are calculated as follows:
LD A
ADD B
SUB C
MUL C
ST E
the result in E will be 0.

In the case of the following calculation:
LD A
ADD B
SUB(
LD C
MUL D
)
ST E
the result in E will be -9.

Error Behavior
The following conditions are handled as an error when executing an expression:
 Attempting to divide by 0.
 Operands do not contain the correct data type for the operation.
 The result of a numerical operation exceeds the value range of its data type
35006144 10/2019 417

Instruction List (IL)
IEC Conformity
For a description of IEC conformity for the IL programming language, see IEC Conformity
(see page 565).
418 35006144 10/2019

Instruction List (IL)
Operands

Introduction
Operators are used for operands.
An operand can be:
 an address
 a literal
 a variable
 a multi-element variable
 an element of a multi-element variable
 an EFB/DFB output or
 an EFB/DFB call

Data Types
The operand and the current accumulator content must be of the same type. Should operands of
various types be processed, a type conversion must be performed beforehand.
In the example the integer variable i1 is converted into a real variable before being added to the
real variable r4.
LD i1
INT_TO_REAL
ADD r4
ST r3
As an exception to this rule, variables with data type TIME can be multiplied or divided by variables
with data type INT, DINT, UINT or UDINT.

Permitted operations:
 LD timeVar1

DIV dintVar1
ST timeVar2

 LD timeVar1
MUL intVar1
ST timeVar2

 LD timeVar1
MUL 10
ST timeVar2

This function is listed by IEC 61131-3 as "undesired" service.
35006144 10/2019 419

Instruction List (IL)
Direct Use of Addresses
Addresses can be used directly (without a previous declaration). In this case the data type is
assigned to the address directly. The assignment is made using the "Large prefix".
The different large prefixes are given in the following table.

Using Other Data Types
Should other data types be assigned as the default data types of an address, this must be done
through an explicit declaration. This variable declaration takes place comfortably using the variable
editor. The data type of an address can not be declared directly in an ST section (e.g. declaration
AT %MW1: UINT; not permitted).

The following variables are declared in the variable editor:
UnlocV1: ARRAY [1..10] OF INT;
LocV1: ARRAY [1..10] OF INT AT %MW100;
LocV2: TIME AT %MW100;
The following calls then have the correct syntax:
%MW200 := 5;
LD LocV1[%MW200]
ST UnlocV1[2]

LD t#3s
ST LocV2

Accessing Field Variables
When accessing field variables (ARRAY), only literals and variables of INT, DINT, UINT and UDINT
types are permitted in the index entry.
The index of an ARRAY element can be negative if the lower threshold of the range is negative.

Example: Saving a field variable
LD var1[i]
ST var2.otto[4]

Large prefix /
Symbol

Example Data type

no prefix %I10, %CH203.MOD, %CH203.MOD.ERR BOOL
X %MX20 BOOL
B %QB102.3 BYTE
W %KW43 INT
D %QD100 DINT
F %MF100 REAL
420 35006144 10/2019

Instruction List (IL)
Modifier

Introduction
Modifiers influence the execution of the operators (see Operators, page 423).

Table of Modifiers
Table of Modifiers:

Modifier Use of Operators
of data type

Description

N BOOL, BYTE,
WORD, DWORD

The modifier N is used to invert the value of the operands bit by bit.
Example: In the example C is 1, if A is 1 and B is 0.
LD A
ANDN B
ST C

C BOOL The modifier C is used to carry out the associated instruction, should
the value of the accumulator be 1 (TRUE).
Example: In the example, the jump after START is only performed
when A is 1 (TRUE) and B is 1 (TRUE).
LD A
AND B
JMPC START

CN BOOL If the modifiers C and N are combined, the associated instruction is
only performed if the value of the accumulator be a Boolean 0
(FALSE).
Example: In the example, the jump after START is only performed
when A is 0 (FALSE) and B is 0 (FALSE).
LD A
AND B
JMPCN START
35006144 10/2019 421

Instruction List (IL)
(all The left bracket modifier (is used to move back the evaluation of the
operand, until the right bracket operator) appears. The number of right
parenthesis operations must be equal to the number of left bracket
modifiers. Brackets can be nested.
Example: In the example E is 1, if C and/or D is 1 and A and B are 1.
LD A
AND B
AND(C
OR D
)
ST E
The example can also be programmed in the following manner:
LD A
AND B
AND(
LD C
OR D
)
ST E

Modifier Use of Operators
of data type

Description
422 35006144 10/2019

Instruction List (IL)
Operators

Introduction
An operator is a symbol for:
 an arithmetic operation to be executed,
 a logical operation to be executed or
 calling an elementary function block - DFBs or subroutines.
Operators are generic, i.e. they adapt automatically to the data type of the operands.

Load and Save Operators
IL programming language load and save operators:

Operator Modifier Meaning Operands Description
LD N

(only for
operands of
data type
BOOL, BYTE,
WORD or
DWORD)

Loads the
operands
value into the
accumulator

Literal, variable,
direct address of any
data type

The value of an operand is loaded into the
accumulator using LD. The size of the
accumulator adapts automatically to the data type
of the operand. This also applies to the derived
data types.
Example: In this example the value of A is loaded
into the accumulator, the value of B then added
and the result saved in E.
LD A
ADD B
ST E
35006144 10/2019 423

Instruction List (IL)
Set and Reset Operators
Set and reset operators of the IL programming language:

ST N
(only for
operands of
data type
BOOL, BYTE,
WORD or
DWORD)

Saves the
accumulator
value in the
operand

Variable, direct
address of any data
type

The current value of the accumulator is stored in
the operand using ST. The data type of the
operand must be the same as the "data type" of
the accumulator.
Example: In this example the value of A is loaded
into the accumulator, the value of B then added
and the result saved in E.
LD A
ADD B
ST E
The "old" result is used in subsequent
calculations, depending on whether or not an LD
follows an ST.
Example: In this example the value of A is loaded
into the accumulator, the value of B then added
and the result saved in E. The value of B is then
subtracted from the value of E (current
accumulator content) and the result saved in C.
LD A
ADD B
ST E
SUB 3
ST C

Operator Modifier Meaning Operands Description

Operator Modifier Meaning Operands Description
S - Sets the

operand to 1,
when the
accumulator
content is 1

Variable, direct
address of BOOL
data type

S sets the operand to "1" when the current content
of the accumulator is a Boolean 1.
Example: In this example the value of A is loaded
to the accumulator. If the content of the
accumulator (value of A) is 1, then OUT is set to 1.
LD A
S OUT
Usually this operator is used together with the
reset operator R as a pair.
Example: This example shows a RS flip-flop (reset
dominant) that is controlled through the two
Boolean variables A and C.
LD A
S OUT
LD C
R OUT
424 35006144 10/2019

Instruction List (IL)
Logical Operators
IL programming language logic operators:

R - Sets the
operand to 0
when the
accumulator
content is 1

Variable, direct
address of BOOL
data type

R sets the operand to "0" when the current content
of the accumulator is a Boolean 1.
Example: In this example the value of A is loaded
to the accumulator. If the content of the
accumulator (value of A) is 1, then OUT is set to 0.
LD A
R OUT
Usually this operator is used together with the set
operator S as a pair.
Example: This example shows a SR flip-flop (set
dominant) that is controlled through the two
Boolean variables A and C.
LD A
R OUT
LD C
S OUT

Operator Modifier Meaning Operands Description

Operator Modifier Meaning Operands Description
AND N, N(, (Logical AND Literal, variable,

direct address of
BOOL, BYTE, WORD
or DWORD data types

The AND operator makes a logical AND link
between the accumulator content and the
operand.
In the case of BYTE, WORD and DWORD data types,
the link is made bit by bit.
Example: In the example D is 1 if A, B and C are 1.
LD A
AND B
AND C
ST D

OR N, N(, (Logical OR Literal, variable,
direct address of
BOOL, BYTE, WORD
or DWORD data types

The OR operator makes a logical OR link between
the accumulator content and the operand.
In the case of BYTE, WORD and DWORD data types,
the link is made bit by bit.
Example: In the example D is 1 if A or B are 1 and
C is 1.
LD A
OR B
OR C
ST D
35006144 10/2019 425

Instruction List (IL)
XOR N, N(, (Logical
exclusive OR

Literal, variable,
direct address of
BOOL, BYTE, WORD
or DWORD data types

The XOR operator makes a logical exclusive OR
link between the accumulator content and the
operand.
If more than two operands are linked, the result
with an uneven number of 1-states is 1, and is 0
with an even number of 1-states.
In the case of BYTE, WORD and DWORD data types,
the link is made bit by bit.
Example: In the example D is 1 if A or B is 1. If A
and B have the same status (both 0 or 1), D is 0.
LD A
XOR B
ST D
If more than two operands are linked, the result
with an uneven number of 1-states is 1, and is 0
with an even number of 1-states.
Example: In the example F is 1 if 1 or 3 operands
are 1. F is 0 if 0, 2 or 4 operands are 1.
LD A
XOR B
XOR C
XOR D
XOR E
ST F

NOT - Logical
negation
(complement)

Accumulator
contents of data
types BOOL, BYTE,
WORD or DWORD

The accumulator content is inverted bit by bit with
NOT.
Example: In the example B is 1 if A is 0 and B is 0
if A is 1.
LD A
NOT
ST B

Operator Modifier Meaning Operands Description
426 35006144 10/2019

Instruction List (IL)
Arithmetic Operators
IL programming language Arithmetic operators:

Operator Modifier Meaning Operands Description
ADD (Addition Literal, variable,

direct address of
data types INT,
DINT, UINT, UDINT,
REAL or TIME

With ADD the value of the operand is added to the
value of the accumulator contents.
Example: The example corresponds to the
formula D = A + B + C
LD A
ADD B
ADD C
ST D

SUB (Subtraction Literal, variable,
direct address of
data types INT,
DINT, UINT, UDINT,
REAL or TIME

With SUB the value of the operand is subtracted
from the accumulator content.
Example: The example corresponds to the
formula D = A - B - C
LD A
SUB B
SUB C
ST D

MUL (Multiplication Literal, variable,
direct address of
data type INT, DINT,
UINT, UDINT or
REAL

The MUL operator multiplies the content of the
accumulator by the value of the operand.
Example: The example corresponds to the
formula D = A * B * C
LD A
MUL B
MUL C
ST D
Note: The MULTIME function in the obsolete
library is available for multiplications involving the
data type Time.

DIV (Division Literal, variable,
direct address of
data type INT, DINT,
UINT, UDINT or
REAL

The DIV operator divides the contents of the
accumulator by the value of the operand.
Example: The example corresponds to the
formula D = A / B / C
LD A
DIV B
DIV C
ST D
Note: The DIVTIME function in the obsolete
library is available for divisions involving the data
type Time.
35006144 10/2019 427

Instruction List (IL)
Comparison Operators
IL programming language comparison operators:

MOD (Modulo
Division

Literal, variable,
direct address of
INT, DINT, UINT or
UDINT data types

The MOD operator divides the value of the first
operand by the value of the second and returns
the remainder (Modulo) as the result.
Example: In this example
 C is 1 if A is 7 and B is 2
 C is 1 if A is 7 and B is -2
 C is -1 if A is -7 and B is 2
 C is -1 if A is -7 and B is -2
LD A
MOD B
ST C

Operator Modifier Meaning Operands Description

Operator Modifier Meaning Operands Description
GT (Comparison: > Literal, variable,

direct address of
data type BOOL,
BYTE, WORD, DWORD,
STRING, INT, DINT,
UINT, UDINT, REAL,
TIME, DATE, DT or
TOD

The GT operator compares the contents of the
accumulator with the contents of the operand. If
the contents of the accumulator are greater than
the contents of the operands, the result is a
Boolean 1. If the contents of the accumulator
are less than/equal to contents of the operands,
the result is a Boolean 0.
Example: In the example the value of D is 1 if A
is greater than 10, otherwise the value of D is 0.
LD A
GT 10
ST D

GE (Comparison: >= Literal, variable,
direct address of
data type BOOL,
BYTE, WORD, DWORD,
STRING, INT, DINT,
UINT, UDINT, REAL,
TIME, DATE, DT or
TOD

The GE operator compares the contents of the
accumulator with the contents of the operand. If
the contents of the accumulator are greater
than/equal to the contents of the operands, the
result is a Boolean 1. If the contents of the
accumulator are less than the contents of the
operands, the result is a Boolean 0.
Example: In the example the value of D is 1 if A
is greater than or equal to 10, otherwise the
value of D is 0.
LD A
GE 10
ST D
428 35006144 10/2019

Instruction List (IL)
EQ (Comparison: = Literal, variable,
direct address of
data type BOOL,
BYTE, WORD, DWORD,
STRING, INT, DINT,
UINT, UDINT, REAL,
TIME, DATE, DT or
TOD

The EQ operator compares the contents of the
accumulator with the contents of the operand. If
the contents of the accumulator is equal to the
contents of the operands, the result is a
Boolean 1. If the contents of the accumulator
are not equal to the contents of the operands,
the result is a Boolean 0.
Example: In the example the value of D is 1 if A
is equal to 10, otherwise the value of D is 0.
LD A
EQ 10
ST D

NE (Comparison: <> Literal, variable,
direct address of
data type BOOL,
BYTE, WORD, DWORD,
STRING, INT, DINT,
UINT, UDINT, REAL,
TIME, DATE, DT or
TOD

The NE operator compares the contents of the
accumulator with the contents of the operand. If
the contents of the accumulator are not equal to
the contents of the operands, the result is a
Boolean 1. If the contents of the accumulator
are equal to the contents of the operands, the
result is a Boolean 0.
Example: In the example the value of D is 1 if A
is not equal to 10, otherwise the value of D is 0.
LD A
NE 10
ST D

LE (Comparison: <= Literal, variable,
direct address of
data type BOOL,
BYTE, WORD, DWORD,
STRING, INT, DINT,
UINT, UDINT, REAL,
TIME, DATE, DT or
TOD

The LE operator compares the contents of the
accumulator with the contents of the operand. If
the contents of the accumulator are less
than/equal to the contents of the operands, the
result is a Boolean 1. If the contents of the
accumulator are greater than the contents of the
operands, the result is a Boolean 0.
Example: In the example the value of D is 1 if A
is smaller than or equal to 10, otherwise the
value of D is 0.
LD A
LE 10
ST D

Operator Modifier Meaning Operands Description
35006144 10/2019 429

Instruction List (IL)
Call Operators
IL programming language call operators:

LT (Comparison: < Literal, variable,
direct address of
data type BOOL,
BYTE, WORD, DWORD,
STRING, INT, DINT,
UINT, UDINT, REAL,
TIME, DATE, DT or
TOD

The LT operator compares the contents of the
accumulator with the contents of the operand. If
the contents of the accumulator is less than the
contents of the operands, the result is a
Boolean 1. If the contents of the accumulator is
greater than/equal to contents of the operands,
the result is a Boolean 0.
Example: In the example the value of D is 1 if A
is smaller than 10, otherwise the value of D is 0.
LD A
LT 10
ST D

Operator Modifier Meaning Operands Description

Operator Modifier Meaning Operands Description
CAL C, CN

(only if the
accumulator
contents are
of the BOOL
data type)

Call of a
function block,
DFB or
subprogram

Instance name of the
function block, DFB
or subprogram

A function block, DFB or subprogram is called up
conditionally or unconditionally with CAL.
see also Calling Elementary Function Blocks and
Derived Function Blocks, page 442 and
Subroutine Call, page 432

FUNCTIO
NNAME

- Executing a
function

Literal, variable,
direct address (data
type is dependent on
function)

A function is performed by specifying the name of
the function.
see also Calling Elementary Functions, page 437

PROCEDU
RENAME

- Executing a
procedure

Literal, variable,
direct address (data
type is dependent on
procedure)

A procedure is performed by specifying the name
of the procedure.
see also Calling Procedures, page 454
430 35006144 10/2019

Instruction List (IL)
Structuring Operators
IL programming language structuring operators:

Operator Modifier Meaning Operands Description
JMP C, CN

(only if the
accumulator
contents are
of the BOOL
data type)

Jump to label LABEL With JMP a jump to the label can be conditional or
unconditional.
see also Labels and Jumps, page 433

RET C, CN
(only if the
accumulator
contents are
of the BOOL
data type)

Return to the
next highest
program
organization
unit

- RETURN operators can be used in DFBs (derived function
blocks) and in SRs (subroutines).
RETURN operators can not be used in the main program.
 In a DFB, a RETURN operator forces the return to the

program which called the DFB.
 The rest of the DFB section containing the RETURN

operator is not executed.
 The next sections of the DFB are not executed.

The program which called the DFB will be executed
after return from the DFB.
If the DFB is called by another DFB, the calling DFB
will be executed after return.

 In a SR, a RETURN operator forces the return to the
program which called the SR.
 The rest of the SR containing the RETURN operator

is not executed.
The program which called the SR will be executed after
return from the SR.

) - Processing
deferred
operations

- A right bracket) starts the processing of the deferred
operator. The number of right bracket operations must be
equal to the number of left bracket modifiers. Brackets can
be nested.
Example: In the example E is 1 if C and/or D is 1 and A and
B are 1.
LD A
AND B
AND(C
OR D
)
ST E
35006144 10/2019 431

Instruction List (IL)
Subroutine Call

Call Subroutine
A subroutine call consists of the CAL operator, followed by the name of the subroutine section,
followed by an empty parameter list (optional).
Subroutine calls do not return a value.
The subroutine to be called must be located in the same task as the IL section called.
Subroutines can also be called from within subroutines.
e.g.
ST A
CAL SubroutineName ()
LD B
or
ST A
CAL SubroutineName
LD B
Subroutines are a supplement to IEC 61131-3 and must be enabled explicitly.
In SFC action sections, subroutine calls are only allowed when Multitoken Operation is enabled.
432 35006144 10/2019

Instruction List (IL)
Labels and Jumps

Introduction
Labels serve as destinations for Jumps.

Label Properties:
Label properties:
 Labels must always be the first element in a line.
 The name must be clear throughout the directory, and it is not upper/lower case sensitive.
 Labels can be 256 characters long (max.).
 Labels must conform to the IEC name conventions.
 Labels are separated by a colon : from the following instruction.
 Labels are only permitted at the beginning of "Expressions", otherwise an undefined value can

be found in the battery.
Example:
start: LD A
 AND B
 OR C
 ST D
 JMP start

Jump Properties:
Jump properties:
 With JMP operation a jump to the label can be restricted or unrestricted.
 JMP can be used with the modifiers C and CN (only if the battery content is data type BOOL).
 Jumps can be made within program and DFB sections.
 Jumps are only possible in the current section.
Possible destinations are:
 the first LD instruction of an EFB/DFB call with assignment of input parameters (see start2),
 a normal LD instruction (see start1),
 a CAL instruction, which does not work with assignment of input parameters (see start3),
 a JMP instruction (see start4),
 the end of an instruction list (see start5).
35006144 10/2019 433

Instruction List (IL)
Example
start2: LD A
 ST counter.CU
 LD B
 ST counter.R
 LD C
 ST counter.PV
 CAL counter
 JMPCN start4
start1: LD A
 AND B
 OR C
 ST D
 JMPC start3
 LD A
 ADD E
 JMP start5
start3: CAL counter (
 CU:=A
 R:=B
 PV:=C)
 JMP start1
 LD A
 OR B
 OR C
 ST D
start4: JMPC start1
 LD C
 OR B
start5: ST A
434 35006144 10/2019

Instruction List (IL)
Comment

Description
In the IL editor, comments always start with the string (* and end in the string *). Any comments
can be entered between these character strings.
Nesting comments is not permitted according to IEC 61131-3. If comments are nested
nevertheless, then they must be enabled explicitly.
35006144 10/2019 435

Instruction List (IL)
Calling Elementary Functions, Elementary Function Blocks, Derived Function Blocks and Procedures

Section 13.2
Calling Elementary Functions, Elementary Function Blocks,
Derived Function Blocks and Procedures

Overview
Calling Elementary Functions, Elementary Function Blocks, Derived Function Blocks and
Procedures in the IL programming language.

What Is in This Section?
This section contains the following topics:

Topic Page
Calling Elementary Functions 437
Calling Elementary Function Blocks and Derived Function Blocks 442
Calling Procedures 454
436 35006144 10/2019

Instruction List (IL)
Calling Elementary Functions

Using Functions
Elementary functions are provided in the form of libraries. The logic of the functions is created in
the programming language C and may not be modified in the IL editor.
Functions have no internal states. If the input values are the same, the value on the output is the
same every time the function is called. For example, the addition of two values always gives the
same result. With some elementary functions, the number of inputs can be increased.
Elementary functions only have one return value (output).

Parameters
"Inputs" and one "output" are required to transfer values to or from a function. These are called
formal parameters.
The current process states are transferred to the formal parameters. These are called actual
parameters.
The following can be used as actual parameters for function inputs:
 Variable
 Address
 Literal
The following can be used as actual parameters for function outputs:
 Variable
 Address
The data type of the actual parameters must match the data type of the formal parameters. The
only exceptions are generic formal parameters whose data type is determined by the actual
parameter.
When dealing with generic ANY_BIT formal parameters, actual parameters of the INT or DINT (not
UINT and UDINT) data types can be used.

This is a supplement to IEC 61131-3 and must be enabled explicitly.
Example:
Allowed:
AND (AnyBitParam := IntVar1, AnyBitParam2 := IntVar2)
Not allowed:
AND_WORD (WordParam1 := IntVar1, WordParam2 := IntVar2)
(In this case, AND_INT must be used.)

AND_ARRAY_WORD (ArrayInt, ...)

(In this case an explicit type conversion must be carried out using INT_ARR_TO_WORD_ARR
(...).
35006144 10/2019 437

Instruction List (IL)
Not all formal parameters must be assigned a value for formal calls. The formal parameter types
that must be assigned a value are in the following table:

If no value is assigned to a formal parameter, the initial value will be used when the function is
executed. If no initial value has been defined, the default value (0) is used.

Programming Notes
Attention should be paid to the following programming notes:
 Functions are only executed if the input EN=1 or the EN input is not used (see also EN and ENO

(see page 441)).
 All generic functions are overloaded. This means the functions can be called with or without

entering the data type.
E.g.
LD i1
ADD i2
ST i3
is identical to
LD i1
ADD_INT i2
ST i3

 In contrast to ST, functions in IL cannot be nested.
 There are two ways of invoking a function:
 Formal call (calling a function with formal parameter names)
 Informal call (calling a function without formal parameter names)

Formal Call
With this type of call (call with formal parameter names), the function is called using an instruction
sequence consisting of the function name, followed by the bracketed list of value assignments
(actual parameters) to the formal parameters. The order in which the formal parameters are listed
is not significant. The list of actual parameters may be wrapped immediately following a comma.
After executing the function the result is loaded into the accumulator and can be stored using ST.

EN and ENO can be used for this type of call.

Parameter type EDT STRING ARRAY ANY_ARRAY IODDT STRUCT FB ANY
Input - - - - + - + -
VAR_IN_OUT + + + + + + / +
Output - - - - - - / -
+ Actual parameter required
- Actual parameter not required, it's the general rule, but there are exceptions for some FFBs, for instance when

some parameters are used to characterize the information we want to be given by the FFB.
/ not applicable
438 35006144 10/2019

Instruction List (IL)
Calling a function with formal parameter names:

or
LIMIT (
MN:=0,
IN:=var1,
MX:=var2
)
ST out
Calling the same function in FBD:

With formal calls, values do not have to be assigned to all formal parameters (see also Parameter
(see page 437)).
LIMIT (MN:=0, IN:=var1)
ST out
Calling the same function in FBD:
35006144 10/2019 439

Instruction List (IL)
Informal Call
With this type of call (call without formal parameter names), the function is called using an
instruction sequence made up by loading the first actual parameter into the accumulator, followed
by the function name and an optional list of actual parameters. The order in which the actual
parameters are listed is significant. The list of actual parameters cannot be wrapped. After
executing the function the result is loaded into the accumulator and can be stored using ST.

EN and ENO cannot be used for this type of call.

Calling a function with formal parameter names:

Calling the same function in FBD:

NOTE: Note that when making an informal call, the list of actual parameters cannot be put in
brackets. IEC 61133-3 requires that the brackets be left out in this case to illustrate that the first
actual parameter is not a part of the list.
Invalid informal call for a function:

If the value to be processed (first actual parameter) is already in the accumulator, the load
instruction can be omitted.
LIMIT B,C
ST result
If the result is to be used immediately, the store instruction can be omitted.
LD A
LIMIT_REAL B,C
MUL E
If the function to be executed only has one input, the name of the function is not followed by a list
of actual parameters.
440 35006144 10/2019

Instruction List (IL)
Calling a function with one actual parameter:

Calling the same function in FBD:

EN and ENO
With all functions an EN input and an ENO output can be configured.

If the value of EN is equal to "0" when the function is called, the algorithms defined by the function
are not executed and ENO is set to "0".

If the value of EN is equal to 1 when the function is called, the algorithms defined by the function
are executed. After the algorithms have been executed successfully, the value of ENO is set to "1".
If an error occurred while executing the algorithms, ENO is set to "0".

If the EN pin is not assigned a value, when the FFB is invoked, the algorithm defined by the FFB is
executed (same as if EN equals to "1").

If ENO is set to "0" (caused when EN=0 or an error occurred during execution), the output of the
function is set to "0".
The output behavior of the function does not depend on whether the function was called up without
EN/ENO or with EN=1.

If EN/ENO are used, the function call must be formal.
LIMIT (EN:=1, MN:=0, IN:=var1, MX:=5, ENO=>var2)
ST out
Calling the same function in FBD:
35006144 10/2019 441

Instruction List (IL)
Calling Elementary Function Blocks and Derived Function Blocks

Elementary Function Block
Elementary function blocks have internal states. If the inputs have the same values, the value on
the output can have another value during the individual operations. For example, with a counter,
the value on the output is incremented.
Function blocks can have several output values (outputs).

Derived Function Block
Derived function blocks (DFBs) have the same properties as elementary function blocks. The user
can create them in the programming languages FBD, LD, IL, and/or ST.

Parameter
"Inputs and outputs" are required to transfer values to or from function blocks. These are called
formal parameters.
The current process states are transferred to the formal parameters. They are called actual
parameters.
The following can be used as actual parameters for function block inputs:
 Variable
 Address
 Literal
The following can be used as actual parameters for function block outputs:
 Variable
 Address
The data type of the actual parameters must match the data type of the formal parameters. The
only exceptions are generic formal parameters whose data type is determined by the actual
parameter.
Exception:
When dealing with generic ANY_BIT formal parameters, actual INT or DINT (not UINT and
UDINT) parameters can be used.

This is a supplement to IEC 61131-3 and must be enabled explicitly.
Example:
Allowed:
AND (AnyBitParam := IntVar1, AnyBitParam2 := IntVar2)
Not allowed:
AND_WORD (WordParam1 := IntVar1, WordParam2 := IntVar2)
(In this case, AND_INT must be used.)
442 35006144 10/2019

Instruction List (IL)
AND_ARRAY_WORD (ArrayInt, ...)

(In this case an explicit type conversion must be carried out using INT_ARR_TO_WORD_ARR
(...).

Not all formal parameters need be assigned a value. The formal parameter types that must be
assigned a value are in the following table:

If no value is allocated to a formal parameter, then the initial value is used for executing the function
block. If no initial value has been defined then the default value (0) is used.
If a formal parameter is not assigned a value and the function block/DFB is instanced more than
once, then the following instances are run with the old value.
NOTE: An ANY_ARRAY_xxx input pin not connected will create automatically an hidden array of
1 element.

Parameter type EDT STRING ARRAY ANY_ARRAY IODDT DEVICE
DDT

FB ANY

EFB: Input - - - - / / / -
EFB: VAR_IN_OUT + + + + + / / +
EFB: Output - - + + + / / +
DFB: Input - - - - / + / -
DFB: VAR_IN_OUT + + + + + + / +
DFB: Output - - + / / / / +
+ Actual parameter required
- Actual parameter not required, it's the general rule, but there are exceptions for some FFBs, for instance when

some parameters are used to characterize the information we want to be given by the FFB.
/ not applicable
35006144 10/2019 443

Instruction List (IL)
Public Variables
In addition to inputs and outputs, some function blocks also provide public variables.
These variables transfer statistical values (values that are not influenced by the process) to the
function block. They are used for setting parameters for the function block.
Public variables are a supplement to IEC 61131-3.
The assignment of values to public variables is made via their initial values or via the load and save
instructions.
Example:

Public variables are read via the instance name of the function block and the names of the public
variables.
Example:

Private Variables
In addition to inputs, outputs and public variables, some function blocks also provide private
variables.
Like public variables, private variables are used to transfer statistical values (values that are not
influenced by the process) to the function block.
Private variables can not be accessed by user program. These type of variables can only be
accessed by the animation table.
NOTE: Nested DFBs are declared as private variables of the parent DFB. So their variables are
also not accessible through programming, but trough the animation table.
Private variables are a supplement to IEC 61131-3.
444 35006144 10/2019

Instruction List (IL)
Programming Notes
Attention should be paid to the following programming notes:
 Functions are only executed if the input EN=1 or the EN input is not used (see also EN and ENO

(see page 451)).
 The assignment of variables to ANY or ARRAY output types must be made using the => operator

(see also Formal Form of CAL with a List of the Input Parameters (see page 446)).
Assignments cannot be made outside the function block call.
The instruction
My_Var := My_SAH.OUT
is invalid, if the output OUT of the SAH function block is of type ANY.
The instruction
Cal My_SAH (OUT=>My_Var)
is valid.

 Special conditions apply when using VAR_IN_OUT variables (see page 451).
 The use of function blocks consists of two parts:
 the Declaration (see page 445)
 calling the function block

 There are four ways of calling a function block:
 Formal Form of CAL with a list of input parameters (see page 446) (call with formal

parameter names)
In this case variables can be assigned to outputs using the => operator.

 Informal form of CAL with a list of input parameters (see page 447) (call without formal
parameter names)

 CAL and Load/Save (see page 448) the input parameter
 Use of the input operators (see page 449)

 Function block/DFB instances can be called multiple times; other than instances of
communication EFBs, these can only be called once (see Multiple Call of a Function Block
Instance (see page 450)).

Declaration
Before calling a function block it must be declared in the variables editor.
35006144 10/2019 445

Instruction List (IL)
Formal Form of CAL with a List of Input Parameters
With this type of call (call with formal parameter names), the function block is called using a CAL
instruction which follows the instance name of the function block and a bracketed list of actual
parameter assignments to the formal parameters. The assignment of the input formal parameter
is made using the := assignment and the output formal parameter is made using the =>
assignment. The sequence in which the input formal parameters and output formal parameters are
enumerated is not significant. The list of actual parameters may be continued immediately
following a comma.
EN and ENO can be used for this type of call.

Function block call in the formal form of CAL with a list of input parameters:

or
CAL MY_COUNT (CU:=var1,

R:=reset,
PV:=100,
Q=>out,
CV=>current)

Calling the same function block in FBD:

It is not necessary to assign a value to all formal parameters (see also Parameter (see page 442)).
CAL MY_COUNT (CU:=var1, R:=reset, Q=>out, CV=>current)
Calling the same function block in FBD:
446 35006144 10/2019

Instruction List (IL)
The value of a function block output can be stored and then saved by loading the function block
output (function block instance name and separated by a full stop or entering the formal
parameter).
Loading and saving function block outputs:

Informal Form of CAL with a List of Input Parameters
With this type of call (call without formal parameter names), the function block is called using a CAL
instruction, that follows the instance name of the function block and a bracketed list of actual
parameter for the inputs and outputs. The order in which the actual parameters are listed in a
function block call is significant. The list of actual parameters cannot be wrapped.
EN and ENO cannot be used for this type of call.

Function block call in the informal form of CAL with a list of input parameters:

Calling the same function block in FBD:

With informal calls it is not necessary to assign a value to all formal parameters (see also
Parameter (see page 442)).
This is a supplement to IEC 61131-3 and must be enabled explicitly.
An empty parameter field is used to omit a parameter.
Call with empty parameter field:
CAL MY_COUNT (var1, , 100, out, current)
35006144 10/2019 447

Instruction List (IL)
Calling the same function block in FBD:

An empty parameter field does not have to be used if formal parameters are omitted at the end.
MY_COUNT (var1, reset)
Calling the same function block in FBD:

CAL and Load/Save the Input Parameters
Function blocks may be called with an instruction list consisting of loading the actual parameters,
followed by saving into the formal parameter, followed by the CAL instruction. The sequence of
loading and saving the parameters is not significant.
Only load and save instructions for the function block currently being configured are allowed
between the first load instruction for the actual parameters and the call of the function block. All
other instructions are not allowed in this position.
It is not necessary to assign a value to all formal parameters (see also Parameter (see page 442)).
CAL with Load/Save the input parameters:
448 35006144 10/2019

Instruction List (IL)
Use of the Input Operators
Function blocks can be called using an instruction list that consists of loading the actual parameters
followed by saving them in the formal parameters followed by an input operator. The sequence of
loading and saving the parameters is not significant.
Only load and save instructions for the function block currently being configured are allowed
between the first load instruction for the actual parameters and the input operator of the function
block. All other instructions are not allowed in this position.
EN and ENO cannot be used for this type of call.

It is not necessary to assign a value to all formal parameters (see also Parameter (see page 442)).
The possible input operators for the various function blocks can be found in the table. Additional
input operators are not available.

Use of the input operators:

Input Operator FB type
S1, R SR
S, R1 RS
CLK R_TRIG
CLK F_TRIG
CU, R, PV CTU_INT, CTU_DINT, CTU_UINT, CTU_UDINT
CD, LD, PV CTD_INT, CTD_DINT, CTD_UINT, CTD_UDINT
CU, CD, R, LD, PV CTUD_INT, CTUD_DINT, CTUD_UINT, CTUD_UDINT
IN, PT TP
IN, PT TON
IN, PT TOF
35006144 10/2019 449

Instruction List (IL)
Calling a Function Block without Inputs
Even if the function block has no inputs or the inputs are not to be parameterized, the function block
should be called before its outputs can be used. Otherwise the initial values of the outputs will be
transferred, i.e. "0".
E.g.
Calling the function block in the IL programming language:
CAL MY_CLOCK ()CAL MY_COUNT (CU:=MY_CLOCK.CLK1, R:=reset, PV:=100)
LD MY_COUNT.Q
ST out
LD MY_COUNT.CV
ST current
Calling the same function block in FBD:

Multiple Function Block Instance Call
Function block/DFB instances can be called multiple times; other than instances of communication
EFBs, these can only be called once.
Calling the same function block/DFB instance more than once makes sense, for example, in the
following cases:
 If the function block/DFB has no internal value or it is not required for further processing.

In this case, memory is saved by calling the same function block/DFB instance more than once
since the code for the function block/DFB is only loaded one time.
The function block/DFB is then handled like a "Function".

 If the function block/DFB has an internal value and this is supposed to influence various
program segments, for example, the value of a counter should be increased in different parts of
the program.
In this case, calling the same function block/DFB means that temporary results do not have to
be saved for further processing in another part of the program.
450 35006144 10/2019

Instruction List (IL)
EN and ENO
With all function blocks/DFBs, an EN input and an ENO output can be configured.

If the value of EN is equal to "0", when the function block/DFB is called, the algorithms defined by
the function block/DFB are not executed and ENO is set to "0".

If the value of EN is equal to "1", when the function block/DFB is invoked, the algorithms which are
defined by the function block/DFB will be executed. After the algorithms have been executed
successfully, the value of ENO is set to "1". If an error occurs when executing these algorithms, ENO
is set to "0".
If the EN pin is not assigned a value, when the FFB is invoked, the algorithm defined by the FFB is
executed (same as if EN equals to "1").

If ENO is set to "0" (results from EN=0 or an error during execution), the outputs of the function
block/DFB retain the status from the last cycle in which they were correctly executed.
The output behavior of the function blocks/DFBs does not depend on whether the function
blocks/DFBs are called without EN/ENO or with EN=1.

If EN/ENO are used, the function block call must be formal. The assignment of variables to ENO must
be made using the => operator.
CAL MY_COUNT (EN:=1, CU:=var1, R:=reset, PV:=value,

ENO=>error, Q=>out, CV=>current) ;
Calling the same function block in FBD:

VAR_IN_OUT Variable
Function blocks are often used to read a variable at an input (input variables), to process it and to
output the updated values of the same variable (output variables). This special type of input/output
variable is also called a VAR_IN_OUT variable.

The following special features are to be noted when using function blocks/DFBs with VAR_IN_OUT
variables:
 All VAR_IN_OUT inputs must be assigned a variable.
 VAR_IN_OUT inputs may not have literals or constants assigned to them.
 VAR_IN_OUT outputs may not have values assigned to them.
 VAR_IN_OUT variables cannot be used outside the block call.
35006144 10/2019 451

Instruction List (IL)
Calling a function block with a VAR_IN_OUT variable in IL:
CAL MY_FBLOCK(IN1:=V1, IN2:=V2, IO1:=V3,

OUT1=>V4, OUT2=>V5)
Calling the same function block in FBD:

VAR_IN_OUT variables cannot be used outside the function block call.

The following function block calls are therefore invalid:
Invalid call, example 1:

Invalid call, example 2:

The following function block calls are always valid:
Valid call, example 1:

LD V1 Loading a V1 variable in the accumulator
CAL InOutFB Calling a function block with the VAR_IN_OUT parameter.

The accumulator now contains a reference to a VAR_IN_OUT parameter.
AND V2 AND operation on accumulator contents and V2 variable.

Error: The operation cannot be performed since the VAR_IN_OUT parameter
(accumulator contents) cannot be accessed from outside the function block call.

LD V1 Loading a V1 variable in the accumulator
AND InOutFB.inout AND operation on accumulator contents and a reference to a VAR_IN_OUT

parameter.
Error: The operation cannot be performed since the VAR_IN_OUT parameter
cannot be accessed from outside the function block call.

CAL InOutFB (IN1:=V1,inout:=V2 Calling a function block with the VAR_IN_OUT parameter and
assigning the actual parameter within the function block call.
452 35006144 10/2019

Instruction List (IL)
Valid call, example 2:

LD V1 Loading a V1 variable in the accumulator
ST InOutFB.IN1 Assigning the accumulator contents to the IN1 parameter of the

IN1 function block.
CAL InOutFB(inout:=V2) Calling the function block with assignment of the actual parameter

(V2) to the VAR_IN_OUT parameter.
35006144 10/2019 453

Instruction List (IL)
Calling Procedures

Procedure
Procedures are provided in the form of libraries. The logic of the procedure is created in the
programming language C and may not be modified in the IL editor.
Procedures - like functions - have no internal states. If the input values are the same, the value on
the output is the same every time the procedure is executed. For example, the addition of two
values gives the same result every time.
In contrast to functions, procedures do not return a value and support VAR_IN_OUT variables.

Procedures are a supplement to IEC 61131-3 and must be enabled explicitly.

Parameter
"Inputs and outputs" are required to transfer values to or from procedures. These are called formal
parameters.
The current process states are transferred to the formal parameters. These are called actual
parameters.
The following can be used as actual parameters for procedure inputs:
 Variable
 Address
 Literal
The following can be used as actual parameters for procedure outputs:
 Variable
 Address
The data type of the actual parameter must match the data type of the formal parameter. The only
exceptions are generic formal parameters whose data type is determined by the actual parameter.
When dealing with generic ANY_BIT formal parameters, actual parameters of the INT or DINT (not
UINT and UDINT) data types can be used.

This is a supplement to IEC 61131-3 and must be enabled explicitly.
Example:
Allowed:
AND (AnyBitParam := IntVar1, AnyBitParam2 := IntVar2)
Not allowed:
AND_WORD (WordParam1 := IntVar1, WordParam2 := IntVar2)
(In this case, AND_INT must be used.)

AND_ARRAY_WORD (ArrayInt, ...)

(In this case an explicit type conversion must be carried out using INT_ARR_TO_WORD_ARR
(...).
454 35006144 10/2019

Instruction List (IL)
Not all formal parameters must be assigned a value for formal calls. Which formal parameter types
must be assigned a value can be seen in the following table.

If no value is allocated to a formal parameter, then the initial value will be used for executing the
function block. If no initial value has been defined, the default value (0) is used.

Programming Notes
Attention should be paid to the following programming notes:
 Procedures are only executed if the input EN=1 or the EN input is not used (see also EN and

ENO (see page 458)).
 Special conditions apply when using VAR_IN_OUT variables (see page 459).
 There are two ways of calling a procedure:
 Formal call (calling a function with formal parameter names)

In this case variables can be assigned to outputs using the => operator (calling a function
block in shortened form).

 Informal call (calling a function without formal parameter names)

Formal Call
With this type of call (call with formal parameter names), the procedure is called using an optional
CAL instruction sequence followed by the name of the procedure and a bracketed list of actual
parameter to formal parameter assignments. The assignment of the input formal parameter is
made using the := assignment and the output formal parameter is made using the =>
assignment. The order in which the input formal parameters and output formal parameters are
listed is not significant.
The list of actual parameters may be wrapped immediately following a comma.
EN and ENO can be used for this type of call.

Parameter type EDT STRING ARRAY ANY_ARRAY IODDT STRUCT FB ANY
Input - - + + + + + +
VAR_IN_OUT + + + + + + / +
Output - - - - - - / +
+ Actual parameter required
- Actual parameter not required
/ not applicable
35006144 10/2019 455

Instruction List (IL)
Calling a procedure with formal parameter names:

or
CAL PROC (IN1:=var1, IN2:=var1, OUT1=>result1,OUT2=>result2)
or
PROC (IN1:=var1,

IN2:=var1,
OUT1=>result1,
OUT2=>result2)

or
CAL PROC (IN1:=var1,

IN2:=var1,
OUT1=>result1,
OUT2=>result2)

Calling the same procedure in FBD:

With formal calls, values do not have to be assigned to all formal parameters (see also Parameter
(see page 454)).
PROC (IN1:=var1, OUT1=>result1, OUT2=>result2)
or
CAL PROC (IN1:=var1, OUT1=>result1, OUT2=>result2)
Calling the same procedure in FBD:
456 35006144 10/2019

Instruction List (IL)
Informal Call without CAL Instruction
With this type of call (call without formal parameter names), procedures are called using an
instruction sequence consisting of the first actual parameter loaded into the accumulator, followed
by the procedure name, followed by a list of the input and output actual parameters. The order in
which the actual parameters are listed is significant. The list of actual parameters cannot be
wrapped.
EN and ENO cannot be used for this type of call.

Calling a procedure with formal parameter names:

Calling the same procedure in FBD:

NOTE: Note that when making an informal call, the list of actual parameters cannot be put in
brackets. IEC 61133-3 requires that the brackets be left out in this case to illustrate that the first
actual parameter is not a part of the list.
Invalid informal call for a procedure:

If the value to be processed (first actual parameter) is already in the accumulator, the load
instruction can be omitted.
EXAMP1 var2,result1,result2
35006144 10/2019 457

Instruction List (IL)
Informal Call with CAL Instruction
With this type of call, procedures are called using an instruction sequence consisting of the CAL
instruction, followed by the procedure name followed by a list of the input and output actual
parameters. The order in which the actual parameters are listed is significant. The list of actual
parameters cannot be wrapped.
EN and ENO cannot be used for this type of call.

Calling a procedure with formal parameter names using CAL instruction:

or
CAL PROC (var1,

var2,
result1,
result2)

Calling the same procedure in FBD:

NOTE: Unlike informal calls without a CAL instruction, when making informal calls with a CAL
instruction, the value to be processed (first actual parameter) is not explicitly loaded in the battery.
Instead it is part of the list of actual parameters. For this reason, when making informal calls with
a CAL instruction, the list of actual parameters must be put in brackets.

EN and ENO
With all procedures, an EN input and an ENO output can be configured.

If the value of EN is equal to "0" when the procedure is called, the algorithms defined by the
procedure are not executed and ENO is set to "0".

If the value of EN is "1" when the procedure is called, the algorithms defined by the function are
executed. After the algorithms have been executed successfully, the value of ENO is set to "1". If
an error occurs when executing these algorithms, ENO is set to "0".

If the EN pin is not assigned a value, when the FFB is invoked, the algorithm defined by the FFB is
executed (same as if EN equals to "1").
458 35006144 10/2019

Instruction List (IL)
If ENO is set to "0" (caused when EN=0 or an error occurred during executing), the outputs of the
procedure are set to "0".
If EN/ENO are used, the procedure call must be formal. The assignment of variables to ENO must
be made using the => operator.
PROC (EN:=1, IN1:=var1, IN2:=var2,

ENO=>error, OUT1=>result1, OUT2=>result2) ;
Calling the same procedure in FBD:

VAR_IN_OUT Variable
Procedures are often used to read a variable at an input (input variables), to process it and to
output the updated values of the same variable (output variables). This special type of input/output
variable is also called a VAR_IN_OUT variable.

The following special features are to be noted when using procedures with VAR_IN_OUT variables.
 All VAR_IN_OUT inputs must be assigned a variable.
 VAR_IN_OUT inputs may not have literals or constants assigned to them.
 VAR_IN_OUT outputs may not have values assigned to them.
 VAR_IN_OUT variables cannot be used outside of the procedure call.

Calling a procedure with VAR_IN_OUT variable in IL:
PROC3 (IN1:=V1, IN2:=V2, IO1:=V3,

OUT1=>V4, OUT2=>V5) ;
Calling the same procedure in FBD:

VAR_IN_OUT variables cannot be used outside the procedure call.

The following procedure calls are therefore invalid:
35006144 10/2019 459

Instruction List (IL)
Invalid call, example 1:

Invalid call, example 2:

Invalid call, example 3:

The following procedure calls are always valid:
Valid call, example 1:

Valid call, example 2:

Valid call, example 3:

LD V1 Loading a V1 variable in the accumulator
CAL InOutProc Calling a procedure with the VAR_IN_OUT parameter.

The accumulator now contains a reference to a VAR_IN_OUT parameter.
AND V2 AND operation on contents of accumulator with variable V2.

Error: The operation cannot be carried out since the VAR_IN_OUT parameter
(contents of accumulator) cannot be accessed outside the procedure call.

LD V1 Loading a V1 variable in the accumulator
AND InOutProc.inout AND operation on the contents of the accumulator and a reference to a

VAR_IN_OUT parameter.
Fehler: The operation cannot be carried out since the VAR_IN_OUT
parameter cannot be accessed outside the procedure call.

LD V1 Loading a V1 variable in the accumulator
InOutFB V2 Calling the procedure with assignment of the actual parameter (V2) to the

VAR_IN_OUT parameter.
Error: The operation cannot be carried out as with this type of procedure call
only the VAR_IN_OUT parameter would be stored in the accumulator for
later use.

CAL InOutProc
(IN1:=V1,inout:=V2)

Calling a procedure with the VAR_IN_OUT parameter and formal
assignment of the actual parameter within the procedure call.

InOutProc
(IN1:=V1,inout:=V2)

Calling a procedure with the VAR_IN_OUT parameter and formal
assignment of the actual parameter within the procedure call.

CAL InOutProc (V1,V2) Calling a procedure with the VAR_IN_OUT parameter and informal
assignment of the actual parameter within the procedure call.
460 35006144 10/2019

EcoStruxure™ Control Expert
Structured Text (ST)
35006144 10/2019
Structured Text (ST)

Chapter 14
Structured Text (ST)

Overview
This chapter describes the programming language structured text ST which conforms to
IEC 61131.

What Is in This Chapter?
This chapter contains the following sections:

Section Topic Page
14.1 General Information about the Structured Text ST 462
14.2 Instructions 473
14.3 Calling Elementary Functions, Elementary Function Blocks, Derived Function

Blocks and Procedures
491
35006144 10/2019 461

Structured Text (ST)
General Information about the Structured Text ST

Section 14.1
General Information about the Structured Text ST

Overview
This section contains a general overview of the structured text ST.

What Is in This Section?
This section contains the following topics:

Topic Page
General Information about Structured Text (ST) 463
Operands 466
Operators 468
462 35006144 10/2019

Structured Text (ST)
General Information about Structured Text (ST)

Introduction
With the programming language of structured text (ST), it is possible, for example, to call up
function blocks, perform functions and assignments, conditionally perform instructions and repeat
tasks.

Expression
The ST programming language works with "Expressions".
Expressions are constructions consisting of operators and operands that return a value when
executed.

Operator
Operators are symbols representing the operations to be executed.

Operand
Operators are used for operands. Operands are variables, literals, FFB inputs/outputs etc.

Instructions
Instructions are used to assign the values returned from the expressions to actual parameters and
to structure and control the expressions.

Representation of an ST Section
Representation of an ST section:
35006144 10/2019 463

Structured Text (ST)
Section Size
The length of an instruction line is limited to 300 characters.
The length of an ST section is not limited within the programming environment. The length of an
ST section is usually limited by the size of the PLC memory.
NOTE: There is no size limitation for section, but sometime when using a large amount of literal
assignments or some specific instructions, a section can generate a Code generation failure during
an application build. Then the solution is to split the section in two or more sections to build the
application.

Syntax
Identifiers and Keywords are not case sensitive.
Exception: Not allowed - spaces and tabs
 keywords
 literals
 values
 identifiers
 variables and
 limiter combinations [e.g. (* for comments)]

Execution Sequence
The evaluation of an expression consists of applying the operators to the operands in the sequence
as defined by the rank of the operators (see Table of Operators (see page 468)). The operator with
the highest rank in an expression is performed first, followed by the operator with the next highest
rank, etc., until the evaluation is complete. Operators with the same rank are performed from left
to right, as they are written in the expression. This sequence can be altered with the use of
parentheses.
If, for example, A, B, C and D have the values 1, 2, 3 and 4, and are calculated as follows:
A+B-C*D
the result is -9.
In the case of the following calculation:
(A+B-C)*D
the result is 0.
If an operator contains two operands, the left operand is executed first, e.g. in the expression
SIN(A)*COS(B)
the expression SIN(A) is calculated first, then COS(B) and only then is the product calculated.
464 35006144 10/2019

Structured Text (ST)
Error Behavior
The following conditions are handled as an error when executing an expression:
 Attempting to divide by 0.
 Operands do not contain the correct data type for the operation.
 The result of a numerical operation exceeds the value range of its data type
If an error occurs when executing the operation, the corresponding Systembit (%S) is set (if
supported by the PLC being used).

IEC Conformity
For a description of IEC conformity for the ST programming language, see IEC Conformity
(see page 565).
35006144 10/2019 465

Structured Text (ST)
Operands

Introduction
An operand can be:
 an address
 a literal
 a variable
 a multi-element variable
 an element of a multi-element variable
 a function call
 an FFB output

Data Types
Data types, which are in an instruction of processing operands, must be identical. Should operands
of various types be processed, a type conversion must be performed beforehand.
In the example the integer variable i1 is converted into a real variable before being added to the
real variable r4.
r3 := r4 + SIN(INT_TO_REAL(i1)) ;
As an exception to this rule, variables with data type TIME can be multiplied or divided by variables
with data type INT, DINT, UINT or UDINT.

Permitted operations:
 timeVar1 := timeVar2 / dintVar1;
 timeVar1 := timeVar2 * intVar1;
 timeVar := 10 * time#10s;
This function is listed by IEC 61131-3 as "undesired" service.

Direct Use of Addresses
Addresses can be used directly (without a previous declaration). In this case the addresses data
type is assigned directly. The assignment is made using the "Large prefix".
The different large prefixes are given in the following table:

Large prefix / Symbol Example Data type
no prefix %I10, %CH203.MOD, %CH203.MOD.ERR BOOL
X %MX20 BOOL
B %QB102.3 BYTE
W %KW43 INT
D %QD100 DINT
F %MF100 REAL
466 35006144 10/2019

Structured Text (ST)
Using Other Data Types
Should other data types be assigned as the default data types of an address, this must be done
through an explicit declaration. This variable declaration takes place comfortably using the variable
editor. The data type of an address can not be declared directly in an ST section (e.g. declaration
AT %MW1: UINT; not permitted).

For example, the following variables are declared in the variable editor:
UnlocV1: ARRAY [1..10] OF INT;
LocV1: ARRAY [1..10] OF INT AT %MW100;
LocV2: TIME AT %MW100;
The following calls then have the correct syntax:
%MW200 := 5;
UnlocV1[2] := LocV1[%MW200];
LocV2 := t#3s;

Accessing Field Variables
When accessing field variables (ARRAY), only literals and variables of the INT, UINT, DINT and
UDINT data types are permitted in the index entry.

The index of an ARRAY element can be negative if the lower threshold of the range is negative.
Example: Using field variables
var1[i] := 8 ;
var2.otto[4] := var3 ;
var4[1+i+j*5] := 4 ;
35006144 10/2019 467

Structured Text (ST)
Operators

Introduction
An operator is a symbol for:
 an arithmetic operation to be executed or
 a logical operation to be executed or
 a function edit (call)
Operators are generic, i.e. they adapt automatically to the data type of the operands.

Table of Operators
Operators are executed in sequence according to priority, see also Execution Sequence,
page 464.
ST programming language operators:

Operator Meaning Order of
rank

possible operands Description

() Use of
Brackets:

1 (highest) Expression Brackets are used to alter the execution
sequence of the operators.
Example: If the operands A, B, C and D
have the values 1, 2, 3, and 4,
A+B-C*D
has the result -9 and
(A+B-C)*D
has the result 0.

FUNCNAME
(Actual
parameter -
list)

Function
processing
(call)

2 Expression, Literal,
Variable, Address (all data
types)

Function processing is used to execute
functions (see Calling Elementary
Functions, page 492).

- Negation 3 Expression, Literal,
Variable, Address of Data
TypeINT, DINT or REAL

During negation - a sign reversal for the
value of the operand takes place.
Example: In the example OUT is -4 if IN1
 is 4.
OUT := - IN1 ;

NOT Complement 3 Expression, Literal,
Variable, Address of Data
Type BOOL, BYTE, WORD or
DWORD

In NOT a bit by bit inversion of the operands
takes place.
Example: In the example OUT is
0011001100 if IN1 is 1100110011.
OUT := NOT IN1 ;
468 35006144 10/2019

Structured Text (ST)
** Exponentiation 4 Expression, Literal,
Variable, Address of Data
TypeREAL (Basis) and INT,
DINT, UINT, UDINT or
REAL (Exponent)

In exponentiation, ** the value of the first
operand (basis) is raised to the power of
the second operand (exponent).
Example: In the example OUT is 625.0 if
IN1 is 5.0 and IN2 is 4.0.
OUT := IN1 ** IN2 ;

* Multiplication 5 Expression, Literal,
Variable, Address of Data
TypeINT, DINT, UINT,
UDINT or REAL

In multiplication, * the value of the first
operand is multiplied by the value of the
second operand (exponent) .
Example: In the example OUT is 20.0 if IN1
is 5.0 and IN2 is 4.0.
OUT := IN1 * IN2 ;
Note: The MULTIME function in the
obsolete library is available for
multiplications involving the data type
Time.

/ Division 5 Expression, Literal,
Variable, Address of Data
TypeINT, DINT, UINT,
UDINT or REAL

In division, / the value of the first operand
is divided by the value of the second
operand.
Example: In the example OUT is 4.0 if IN1
is 20.0 and IN2 is 5.0.
OUT := IN1 / IN2 ;
Note: The DIVTIME function in the
obsolete library is available for divisions
involving the data type Time.

MOD Modulo 5 Expression, Literal,
Variable, Address of Data
Type INT, DINT, UINT or
UDINT

For MOD the value of the first operand is
divided by that of the second operand and
the remainder of the division (Modulo) is
displayed as the result.
Example: In this example
 OUT is 1 if IN1 is 7 and IN2 is 2
 OUT is 1 if IN1 is 7 and IN2 is -2
 OUT is -1 if IN1 is -7 and IN2 is 2
 OUT is -1 if IN1 is -7 and IN2 is -2
OUT := IN1 MOD IN2 ;

+ Addition 6 Expression, Literal,
Variable, Address of Data
Type INT, DINT, UINT,
UDINT, REAL or TIME

In addition, + the value of the first operand
is added to the value of the second
operand.
Example: In this example
OUT is 9, if IN1 is 7 and IN2 is 2
OUT := IN1 + IN2 ;

Operator Meaning Order of
rank

possible operands Description
35006144 10/2019 469

Structured Text (ST)
- Subtraction 6 Expression, Literal,
Variable, Address of Data
Type INT, DINT, UINT,
UDINT, REAL or TIME

In subtraction, - the value of the second
operand is subtracted from the value of the
first operand.
Example: In the example OUT is 6 if IN1
is 10 and IN2 is 4.
OUT := IN1 - IN2 ;

< Less than
comparison

7 Expression, Literal,
Variable, Address of Data
Type BOOL, BYTE, INT,
DINT, UINT, UDINT, REAL,
TIME, WORD, DWORD,
STRING, DT, DATE or TOD

The value of the first operand is compared
with the value of the second using <. If the
value of the first operand is less than the
value of the second, the result is a Boolean
1. If the value of the first operand is greater
than or equal to the value of the second,
the result is a Boolean 0.
Example: In the example OUT is 1 if IN1 is
less than 10 and is otherwise 0.
OUT := IN1 < 10 ;

> Greater than
comparison

7 Expression, Literal,
Variable, Address of Data
Type BOOL, BYTE, INT,
DINT, UINT, UDINT, REAL,
TIME, WORD, DWORD,
STRING, DT, DATE or TOD

The value of the first operand is compared
with the value of the second using >. If the
value of the first operand is greater than
the value of the second, the result is a
Boolean 1. If the value of the first operand
is less than or equal to the value of the
second, the result is a Boolean 0.
Example: In the example OUT is 1 if IN1 is
greater than 10, and is 0 if IN1 is less
than 0.
OUT := IN1 > 10 ;

<= Less than or
equal to
comparison

7 Expression, Literal,
Variable, Address of Data
Type BOOL, BYTE, INT,
DINT, UINT, UDINT, REAL,
TIME, WORD, DWORD,
STRING, DT, DATE or TOD

The value of the first operand is compared
with the value of the second operand using
<=. If the value of the first operand is less
than or equal to the value of the second,
the result is a Boolean 1. If the value of the
first operand is greater than the value of
the second, the result is a Boolean 0.
Example: In the example OUT is 1 if IN1 is
less than or equal to 10, and otherwise is 0.
OUT := IN1 <= 10 ;

Operator Meaning Order of
rank

possible operands Description
470 35006144 10/2019

Structured Text (ST)
>= Greater than or
equal to
comparison

7 Expression, Literal,
Variable, Address of Data
Type BOOL, BYTE, INT,
DINT, UINT, UDINT, REAL,
TIME, WORD, DWORD,
STRING, DT, DATE or TOD

The value of the first operand is compared
with the value of the second operand using
>=. If the value of the first operand is
greater than or equal to the value of the
second, the result is a Boolean 1. If the
value of the first operand is less than the
value of the second, the result is a Boolean
0.
Example: In the example OUT is 1 if IN1 is
greater than or equal to 10, and otherwise
is 0.
OUT := IN1 >= 10 ;

= Equality 8 Expression, Literal,
Variable, Address of Data
Type BOOL, BYTE, INT,
DINT, UINT, UDINT, REAL,
TIME, WORD, DWORD,
STRING, DT, DATE or TOD

The value of the first operand is compared
with the value of the second operand using
=. If the value of the first operand is equal
to the value of the second, the result is a
Boolean 1. If the value of the first operand
is not equal to the value of the second, the
result is a Boolean 0.
Example: In the example OUT is 1 if IN1 is
equal to 10 and is otherwise 0.
OUT := IN1 = 10 ;

<> Inequality 8 Expression, Literal,
Variable, Address of Data
Type BOOL, BYTE, INT,
DINT, UINT, UDINT, REAL,
TIME, WORD, DWORD,
STRING, DT, DATE or TOD

The value of the first operand is compared
with the value of the second using <>. If the
value of the first operand is not equal to the
value of the second, the result is a Boolean
1. If the value of the first operand is equal
to the value of the second, the result is a
Boolean 0.
Example: In the example OUT is 1 if IN1 is
not equal to 10 and is otherwise 0.
OUT := IN1 <> 10 ;

& Logical AND 9 Expression, Literal,
Variable, Address of Data
Type BOOL, BYTE, WORD or
DWORD

With &, there is a logical AND link between
the operands. In the case of BYTE, WORD
and DWORD data types, the link is made bit
by bit.
Example: In the examples OUT is 1 if IN1,
IN2 and IN3 are 1.
OUT := IN1 & IN2 & IN3 ;

Operator Meaning Order of
rank

possible operands Description
35006144 10/2019 471

Structured Text (ST)
AND Logical AND 9 Expression, Literal,
Variable, Address of Data
Type BOOL, BYTE, WORD or
DWORD

With AND, there is a logical AND link
between the operands. In the case of
BYTE, WORD and DWORD data types, the link
is made bit by bit.
Example: In the examples OUT is 1 if IN1,
IN2 and IN3 are 1.
OUT := IN1 AND IN2 AND IN3 ;

XOR Logical
Exclusive OR

10 Expression, Literal,
Variable, Address of Data
Type BOOL, BYTE, WORD or
DWORD

With XOR, there is a logical Exclusive OR
link between the operations. In the case of
BYTE, WORD and DWORD data types, the link
is made bit by bit.
Example: In the example OUT is 1 if IN1
and IN2 are not equal. If A and B have the
same status (both 0 or 1), D is 0.
OUT := IN1 XOR IN2 ;
If more than two operands are linked, the
result with an uneven number of 1-states is
1, and is 0 with an even number of 1-
states.
Example: In the example OUT is 1 if 1 or 3
operands are 1. OUT is 0 if 0, 2 or 4
operands are 1.
OUT := IN1 XOR IN2 XOR IN3 XOR
IN4 ;

OR Logical OR 11 (lowest) Expression, Literal,
Variable, Address of Data
Type BOOL, BYTE, WORD or
DWORD

With OR, there is a logical OR link between
the operands. With the BYTE and WORD,
DWORD data types, the link is made bit
by bit.
Example: In the example OUT is 1 if IN1,
IN2 or IN3 is 1.
OUT := IN1 OR IN2 OR IN3 ;

Operator Meaning Order of
rank

possible operands Description
472 35006144 10/2019

Structured Text (ST)
Instructions

Section 14.2
Instructions

Overview
This section describes the instructions for the programming language of structured text ST.

What Is in This Section?
This section contains the following topics:

Topic Page
Instructions 474
Assignment 475
Select Instruction IF...THEN...END_IF 477
Select Instruction ELSE 478
Select Instruction ELSIF...THEN 479
Select Instruction CASE...OF...END_CASE 480
Repeat Instruction FOR...TO...BY...DO...END_FOR 481
Repeat Instruction WHILE...DO...END_WHILE 483
Repeat Instruction REPEAT...UNTIL...END_REPEAT 484
Repeat Instruction EXIT 485
Subroutine Call 486
RETURN 487
Empty Instruction 488
Labels and Jumps 489
Comment 490
35006144 10/2019 473

Structured Text (ST)
Instructions

Description
Instructions are the "Commands" of the ST programming language.
Instructions must be terminated with semicolons.
Several instructions (separated by semicolons) can be present in one line.
A single semicolon represents an Empty instruction (see page 488).
474 35006144 10/2019

Structured Text (ST)
Assignment

Introduction
When an assignment is performed, the current value of a single or multi-element variable is
replaced by the result of the evaluation of the expression.
An assignment consists of a variable specification on the left side, followed by the assignment
operator :=, followed by the expression to be evaluated.

Both variables (left and right sides of the assignment operator) must have the same data type.
Arrays are a special case. After being explicitly enabled, assignment of two arrays with different
lengths can be made.

Assigning the Value of a Variable to Another Variable
Assignments are used to assign the value of a variable to another variable.
The instruction
A := B ;
is used, for example, to replace the value of the variable A with the current value of variable B. If A
and B are elementary data types, the individual value of B is passed to A. If A and B are derived
data types, the values of all B elements are passed to A.

Assigning the Value of a Literal to a Variable
Assignments are used to assign a literal to variables.
The instruction
C := 25 ;
is used, for example, to assign the value 25 to the variable C.

Assigning the Value of an Operation to a Variable
Assignments are used to assign to a variable a value which is the result of an operation.
The instruction
X := (A+B-C)*D ;
is used, for example, to assign the result of the operation (A+B-C)*D to the variable X.
35006144 10/2019 475

Structured Text (ST)
Assigning the Value of an FFB to a Variable
Assignments are used to assign a value returned by a function or a function block to a variable.
The instruction
B := MOD(C,A) ;
is used, for example, to call the MOD (Modulo) function and assign the result of the calculation to
the variable B.

The instruction
A := MY_TON.Q ;
is used, for example, to assign the value of the Q output of the MY_TON function block (instance of
the TON function block) to the variable A. (This is not a function block call))

Multiple Assignments
Multiple assignments are a supplement to IEC 61131-3 and must be enabled explicitly.
Even after being enabled, multiple assignments are NOT allowed in the following cases:
 in the parameter list for a function block call
 in the element list to initialize structured variables
The instruction
X := Y := Z
is allowed.
The instructions
FB(in1 := 1, In2 := In3 := 2) ;
and
strucVar := (comp1 := 1, comp2 := comp3 := 2) ;
are not allowed.

Assignments between Arrays and WORD-/DWORD Variables
Assignments between arrays and WORD-/DWORD variables are only possible if a type conversion
has previously been carried out, e.g.:
%Q3.0:16 := INT_TO_AR_BOOL(%MW20) ;
The following conversion functions are available (General Library, family Array):
 MOVE_BOOL_AREBOOL
 MOVE_WORD_ARWORD
 MOVE_DWORD_ARDWORD
 MOVE_INT_ARINT
 MOVE_DINT_ARDINT
 MOVE_REAL_ARREAL
476 35006144 10/2019

Structured Text (ST)
Select Instruction IF...THEN...END_IF

Description
The IF instruction determines that an instruction or a group of instructions will only be executed if
its related Boolean expression has the value 1 (true). If the condition is 0 (false), the instruction or
the instruction group will not be executed.
The THEN instruction identifies the end of the condition and the beginning of the instruction(s).

The END_IF instruction marks the end of the instruction(s).

NOTE: 74 IF...THEN...END_IF instructions may be nested to generate complex selection
instructions.

Example IF...THEN...END_IF
The condition can be expressed using a Boolean variable.
If FLAG is 1, the instructions will be executed; if FLAG is 0, they will not be executed.
IF FLAG THEN
 C:=SIN(A) * COS(B) ;
 B:=C - A ;
END_IF ;
The condition can be expressed using an operation that returns a Boolean result.
If A is greater than B, the instructions will be executed; if A is less than or equal to B, they will not
be executed.
IF A>B THEN
 C:=SIN(A) * COS(B) ;
 B:=C - A ;
END_IF ;

Example IF NOT...THEN...END_IF
The condition can be inverted using NOT (execution of both instructions at 0).
IF NOT FLAG THEN
 C:=SIN_REAL(A) * COS_REAL(B) ;
 B:=C - A ;
END_IF ;

See Also
ELSE (see page 478)
ELSIF (see page 479)
35006144 10/2019 477

Structured Text (ST)
Select Instruction ELSE

Description
The ELSE instruction always comes after an IF...THEN, ELSIF...THEN or CASE instruction.

If the ELSE instruction comes after an IF or ELSIF instruction, the instruction or group of
instructions will only be executed if the associated Boolean expressions of the IF and ELSIF
instruction are 0 (false). If the condition of the IF or ELSIF instruction is 1 (true), the instruction or
group of instructions will not be executed.
If the ELSE instruction comes after CASE, the instruction or group of instructions will only be
executed if no tag contains the value of the selector. If an identification contains the value of the
selector, the instruction or group of instructions will not be executed.
NOTE: Any number of IF...THEN...ELSE...END_IF instructions may be nested to generate
complex selection instructions.

Example ELSE
IF A>B THEN
 C:=SIN(A) * COS(B) ;
 B:=C - A ;
ELSE
 C:=A + B ;
 B:=C * A ;
END_IF ;

See Also
IF (see page 477)
ELSIF (see page 479)
CASE (see page 480)
478 35006144 10/2019

Structured Text (ST)
Select Instruction ELSIF...THEN

Description
The ELSE instruction always comes after an IF...THEN instruction. The ELSIF instruction
determines that an instruction or group of instructions is only executed if the associated Boolean
expression for the IF instruction has the value 0 (false) and the associated Boolean expression of
the ELSIF instruction has the value 1 (true). If the condition of the IF instruction is 1 (true) or the
condition of the ELSIF instruction is 0 (false), the command or group of commands will not be
executed.
The THEN instruction identifies the end of the ELSIF condition(s) and the beginning of the
instruction(s).
NOTE: Any number of IF...THEN...ELSIF...THEN...END_IF instructions may be nested to
generate complex selection instructions.

Example ELSIF...THEN
IF A>B THEN
 C:=SIN(A) * COS(B) ;
 B:=SUB(C,A) ;
ELSIF A=B THEN
 C:=ADD(A,B) ;
 B:=MUL(C,A) ;
END_IF ;

For Example Nested Instructions
IF A>B THEN
 IF B=C THEN
 C:=SIN(A) * COS(B) ;
 ELSE
 B:=SUB(C,A) ;
 END_IF ;
ELSIF A=B THEN
 C:=ADD(A,B) ;
 B:=MUL(C,A) ;
ELSE
 C:=DIV(A,B) ;
END_IF ;

See Also
IF (see page 477)
ELSE (see page 478)
35006144 10/2019 479

Structured Text (ST)
Select Instruction CASE...OF...END_CASE

Description
The CASE instruction consists of an INT data type expression (the "selector") and a list of
instruction groups. Each group is provided with a tag which consists of one or several whole
numbers (INT, DINT, UINT, UDINT) or ranges of whole number values. The first group is executed
by instructions, whose tag contains the calculated value of the selector. Otherwise none of the
instructions will be executed.
The OF instruction indicates the start of the tag.

An ELSE instruction may be carried out within the CASE instruction, whose instructions are
executed if no tag contains the selector value.
The END_CASE instruction marks the end of the instruction(s).

Example CASE...OF...END_CASE
ExampleCASE...OF...END_CASE

See Also
ELSE (see page 478)
480 35006144 10/2019

Structured Text (ST)
Repeat Instruction FOR...TO...BY...DO...END_FOR

Description
The FOR instruction is used when the number of occurrences can be determined in advance.
Otherwise WHILE (see page 483) or REPEAT (see page 484) are used.

The FOR instruction repeats an instruction sequence until the END_FOR instruction. The number of
occurrences is determined by start value, end value and control variable.
The control variable, initial value and end value must be of the same data type (INT, UINT, DINT
or UDINT).

The control variable, initial value and end value can be changed by a repeated instruction. This is
a supplement to IEC 61131-3.
The FOR instruction increments the control variable value of one start value to an end value. The
increment value has the default value 1. If a different value is to be used, it is possible to specify
an explicit increment value (variable or constant). The control variable value is checked before
each new loop. If it is outside the start value and end value range, the loop will be left.
Before running the loop for the first time a check is made to determine whether incrementation of
the control variables, starting from the initial value, is moving toward the end value. If this is not the
case (e.g. initial value ≤ end value and negative increment), the loop will not be processed. The
control variable value is not defined outside of the loop.
The DO instruction identifies the end of the repeat definition and the beginning of the instruction(s).

The occurrence may be terminated early using the EXIT. The END_FOR instruction marks the end
of the instruction(s).

Example: FOR with Increment 1
FOR with increment 1

FOR with Increment not Equal to 1
If an increment other than 1 is to be used, it can be defined by BY. The increment, the initial value,
the end value and the control variable must be of the same data type (DINT or INT). The criterion
for the processing direction (forwards, backwards) is the sign of the BY expression. If this
expression is positive, the loop will run forward; if it is negative, the loop will run backward.
35006144 10/2019 481

Structured Text (ST)
Example: Counting forward in Two Steps
Counting forward in two steps

Example: Counting Backwards
Counting backwards
FOR i:= 10 TO 1 BY -1 DO (* BY < 0 : Backwards.loop *)
C:= C * COS(B) ; (* Instruction is executed 10 x *)

END_FOR ;

Example: "Unique" Loops
The loops in the example are run exactly once, as the initial value = end value. In this context it
does not matter whether the increment is positive or negative.
FOR i:= 10 TO 10 DO (* Unique Loop *)
C:= C * COS(B) ;

END_FOR ;
or
FOR i:= 10 TO 10 BY -1 DO (* Unique Loop *)
C:= C * COS(B) ;

END_FOR ;

Example: Critical Loops
If the increment is j > 0 in the example, the instruction is executed.

If j < is 0, the instructions are not executed because the situation initial value < only allows the end
value to be incremented by ≥ 0.
If j = 0, the instructions are executed and an endless loop is created as the end value will never
be reached with an increment of 0.
FOR i:= 1 TO 10 BY j DO
C:= C * COS(B) ;

END_FOR ;
482 35006144 10/2019

Structured Text (ST)
Repeat Instruction WHILE...DO...END_WHILE

Description
The WHILE instruction has the effect that a sequence of instructions will be executed repeatedly
until its related Boolean expression is 0 (false). If the expression is false right from the start, the
group of instructions will not be executed at all.
The DO instruction identifies the end of the repeat definition and the beginning of the instruction(s).

The occurrence may be terminated early using the EXIT.

The END_WHILE instruction marks the end of the instruction(s).

In the following cases WHILE may not be used as it can created an endless loop which causes the
program to crash:
 WHILE may not be used for synchronization between processes, e.g. as a "Waiting Loop" with

an externally defined end condition.
 WHILE may not be used in an algorithm, as the completion of the loop end condition or execution

of an EXIT instruction can not be guaranteed.

Example WHILE...DO...END_WHILE
x := 1;
WHILE x <= 100 DO
 x := x + 4;
END_WHILE ;

See Also
EXIT (see page 485)
35006144 10/2019 483

Structured Text (ST)
Repeat Instruction REPEAT...UNTIL...END_REPEAT

Description
The REPEAT instruction has the effect that a sequence of instructions is executed repeatedly (at
least once), until its related Boolean condition is 1 (true).
The UNTIL instruction marks the end condition.

The occurrence may be terminated early using the EXIT.

The END_REPEAT instruction marks the end of the instruction(s).

In the following cases REPEAT may not be used as it can create an endless loop which causes the
program to crash:
 REPEAT may not be used for synchronization between processes, e.g., as a "Waiting Loop" with

an externally defined end condition.
 REPEAT may not be used in an algorithm, such as the completion of the loop end condition or

execution of an EXIT instruction cannot be guaranteed.

Example REPEAT...UNTIL...END_REPEAT
x := -1;
REPEAT x := x + 2;
 UNTIL x >= 101
END_REPEAT;

See Also
EXIT (see page 485)
484 35006144 10/2019

Structured Text (ST)
Repeat Instruction EXIT

Description
The EXIT instruction is used to terminate repeat instructions (FOR, WHILE, REPEAT) before the
end condition has been met.
If the EXIT instruction is within a nested repetition, the innermost loop (in which EXIT is situated)
is left. Next, the first instruction following the loop end (END_FOR, END_WHILE or END_REPEAT) is
executed.

Example EXIT
If FLAG has the value 0, SUM will be 15 following the execution of the instructions.

If FLAG has the value 1, SUM will be 6 following the execution of the instructions.
SUM := 0 ;
FOR I := 1 TO 3 DO
 FOR J := 1 TO 2 DO
 IF FLAG=1 THEN EXIT ;
 END_IF ;
 SUM := SUM + J ;
 END_FOR ;
 SUM := SUM + I ;
END_FOR ;

See Also
CASE (see page 480)
WHILE (see page 483)
REPEAT (see page 484)
35006144 10/2019 485

Structured Text (ST)
Subroutine Call

Subroutine Call
A subroutine call consists of the name of the subroutine section followed by an empty parameter
list.
Subroutine calls do not return a value.
The subroutine to be called must be located in the same task as the ST section called.
Subroutines can also be called from within subroutines.
For example:
SubroutineName () ;
Subroutine calls are a supplement to IEC 61131-3 and must be enabled explicitly.
In SFC action sections, subroutine calls are only allowed when Multitoken Operation is enabled.
486 35006144 10/2019

Structured Text (ST)
RETURN

Description
RETURN instructions can be used in DFBs (derived function blocks) and in SRs (subroutines).

RETURN instructions can not be used in the main program.

 In a DFB, a RETURN instruction forces the return to the program which called the DFB.
 The rest of the DFB section containing the RETURN instruction is not executed.
 The next sections of the DFB are not executed.
The program which called the DFB will be executed after return from the DFB.
If the DFB is called by another DFB, the calling DFB will be executed after return.

 In a SR, a RETURN instruction forces the return to the program which called the SR.
 The rest of the SR containing the RETURN instruction is not executed.

The program which called the SR will be executed after return from the SR.
35006144 10/2019 487

Structured Text (ST)
Empty Instruction

Description
A single semicolon ; represents an empty instruction.

For example,
IF x THEN ; ELSE ..
In this example, an empty instruction follows the THEN instruction. This means that the program
exits the IF instruction as soon as the IF condition is 1.
488 35006144 10/2019

Structured Text (ST)
Labels and Jumps

Introduction
Labels serve as destinations for jumps.
Jumps and labels in ST are a supplement to the IEC 61131-3 and must be enabled explicitly.

Label Properties
Label properties:
 Labels must always be the first element in a line.
 Labels may only come before instructions of the first order (not in loops).
 The name must be clear throughout the directory, and it is not upper/lower case sensitive.
 Labels must conform to the general naming conventions.
 Labels are separated by a colon : from the following instruction.

Properties of Jumps
Properties of jumps
 Jumps can be made within program and DFB sections.
 Jumps are only possible in the current section.

Example
IF var1 THEN

JMP START;
:
:START: ...
35006144 10/2019 489

Structured Text (ST)
Comment

Description
In the ST editor, comments always start with the string (* and end in the string *). Any comments
can be entered between these character strings. Comments can be entered in any position in the
ST editor, except in keywords, literals, identifiers and variables.
Nesting comments is not permitted according to IEC 61131-3. If comments are nested
nevertheless, then they must be enabled explicitly.
490 35006144 10/2019

Structured Text (ST)
Calling Elementary Functions, Elementary Function Blocks, Derived Function Blocks and Procedures

Section 14.3
Calling Elementary Functions, Elementary Function Blocks,
Derived Function Blocks and Procedures

Overview
Calling Elementary Functions, Elementary Function Blocks, Derived Function Blocks and
Procedures in the ST programming language.

What Is in This Section?
This section contains the following topics:

Topic Page
Calling Elementary Functions 492
Call Elementary Function Block and Derived Function Block 498
Procedures 507
35006144 10/2019 491

Structured Text (ST)
Calling Elementary Functions

Elementary Functions
Elementary functions are provided in the form of libraries. The logic of the functions is created in
the programming language C and may not be modified in the ST editor.
Functions have no internal states. If the input values are the same, the value at the output is the
same for all executions of the function. For example, the addition of two values gives the same
result at every execution.
Some elementary functions can be extended to more than 2 inputs.
Elementary functions only have one return value (Output).

Parameters
"Inputs" and one "output" are required to transfer values to or from a function. These are called
formal parameters.
The current process states are transferred to the formal parameters. These are called actual
parameters.
The following can be used as actual parameters for function inputs:
 Variable

Address
Literal
ST Expression

The following can be used as actual parameters for function outputs:
 Variable
 Address
The data type of the actual parameters must match the data type of the formal parameters. The
only exceptions are generic formal parameters whose data type is determined by the actual
parameter.
When dealing with generic ANY_BIT formal parameters, actual parameters of the INT or DINT (not
UINT and UDINT) data types can be used.

This is a supplement to IEC 61131-3 and must be enabled explicitly.
Example:
Allowed:
AND (AnyBitParam := IntVar1, AnyBitParam2 := IntVar2);
492 35006144 10/2019

Structured Text (ST)
Not allowed:
AND_WORD (WordParam1 := IntVar1, WordParam2 := IntVar2);
(In this case, AND_INT must be used.)

AND_ARRAY_WORD (ArrayInt, ...);

(In this case an explicit type conversion must be carried out using INT_ARR_TO_WORD_ARR
(...);.

Not all formal parameters must be assigned with a value. The formal parameter types that must be
assigned with a value are in this table:

If no value is allocated to a formal parameter, then the initial value is used for executing the function
block. If no initial value has been defined, then the default value (0) is used.

Programming Notes
Attention should be paid to the following:
 All generic functions are overloaded. This means the functions can be called with or without

entering the data type.
E.g.
i1 := ADD (i2, 3);
is identical to
i1 := ADD_INT (i2, 3);

 Functions can be nested (see page 496).
 Functions are only executed if the input EN = 1 or the EN (see page 497) input is not used.
 There are two ways of calling a function:
 Formal call (calling a function with formal parameter names)
 Informal call (calling a function without formal parameter names)

Parameter type EDT STRING ARRAY ANY_ARRAY IODDT STRUCT FB ANY
Input - - - - + - + -
VAR_IN_OUT + + + + + + / +
Output - - - - - - / -
+ Actual parameter required
- Actual parameter not required, it's the general rule, but there are exceptions for some FFBs, for instance when

some parameters are used to characterize the information we want to be given by the FFB.
/ not applicable
35006144 10/2019 493

Structured Text (ST)
Formal Call
With formal calls (calls with formal parameter names), the call consists of the actual parameter of
the output, followed by the assignment instruction :=, then the function name and then by a
bracketed list of value assignments (actual parameters) to the formal parameter. The order in
which the formal parameters are enumerated in a function call is not significant.
EN and ENO can be used for this type of call.

Calling a function with formal parameter names:

Calling the same function in FBD:

With formal calls it is not necessary to assign a value to all formal parameters (see page 492).
out:=LIMIT (MN:=0, IN:=var1) ;
Calling the same function in FBD:
494 35006144 10/2019

Structured Text (ST)
Informal Call
With informal calls (calls without formal parameter names), the call consists of the actual parameter
of the output, followed by the symbol of the assignment instruction :=, then the function name and
then by a bracketed list of the inputs actual parameters. The order that the actual parameters are
enumerated in a function call is significant.
EN and ENO cannot be used for this type of call.

Calling a function without formal parameter names:

Calling the same function in FBD:

With informal calls it is not necessary to assign a value to all formal parameters (see page 492).
This is a supplement to IEC 61131-3 and must be enabled explicitly.
An empty parameter field is used to skip a parameter.
Call with empty parameter field:
out:=LIMIT (,var1, 5 + var) ;
Calling the same function in FBD:

An empty parameter field does not have to be used if formal parameters are omitted at the end.
out:=LIMIT (0, var1) ;
Calling the same function in FBD:
35006144 10/2019 495

Structured Text (ST)
Nesting Functions
A function call can include the call of further functions. The nesting depth is not limited.
Nested call of array function:
out:=LIMIT (MN:=4, IN:=MUL(IN1:=var1, IN2:=var2), MX:=5) ;
Calling the same function in FBD:

Functions that return a value of the ANY_ARRAY data type can not be used within a function call.

Unauthorized nesting with ANY_ARRAY:

ANY_ARRAY is permitted as the return value of the function called or as a parameter of the nested
functions.
Authorized nesting with ANY_ARRAY:
496 35006144 10/2019

Structured Text (ST)
EN and ENO
With all functions an EN input and an ENO output can be configured.

If the value of EN is equal to "0", when the function is called, the algorithms defined by the function
are not executed and ENO is set to "0".

If the value of EN is equal to "1", when the function is called, the algorithms which are defined by
the function are executed. After successful execution of these algorithms, the value of ENO is set
to "1". If an error occurs during execution of these algorithms, ENO will be set to "0".

If the EN pin is not assigned a value, when the FFB is invoked, the algorithm defined by the FFB is
executed (same as if EN equals to "1").

If ENO is set to "0" (caused when EN=0 or an error occurred during executing), the output of the
function is set to "0".
The output behavior of the function does not depend on whether the function was called up without
EN/ENO or with EN=1.

If EN/ENO are used, the function call must be formal.
out:=LIMIT (EN:=1, MN:=0, IN:=var1, MX:=5, ENO=>var2) ;
Calling the same function in FBD:
35006144 10/2019 497

Structured Text (ST)
Call Elementary Function Block and Derived Function Block

Elementary Function Block
Elementary function blocks have internal states. If the inputs have the same values, the value on
the output can have another value during the individual operations. For example, with a counter,
the value on the output is incremented.
Function blocks can have several output values (outputs).

Derived Function Block
Derived function blocks (DFBs) have the same characteristics as elementary function blocks. The
user can create them in the programming languages FBD, LD, IL, and/or ST.

Parameters
"Inputs and outputs" are required to transfer values to or from function blocks. These are called
formal parameters.
The current process states are transferred to the formal parameters. They are called actual
parameters.
The following can be used as actual parameters for function block inputs:
 Variable
 Address
 Literal
The following can be used as actual parameters for function block outputs:
 Variable
 Address
The data type of the actual parameters must match the data type of the formal parameters. The
only exceptions are generic formal parameters whose data type is determined by the actual
parameter.
When dealing with generic ANY_BIT formal parameters, actual parameters of the INT or DINT (not
UINT and UDINT) data types can be used.

This is a supplement to IEC 61131-3 and must be enabled explicitly.
Example:
Allowed:
AND (AnyBitParam := IntVar1, AnyBitParam2 := IntVar2);
Not allowed:
AND_WORD (WordParam1 := IntVar1, WordParam2 := IntVar2);
(In this case, AND_INT must be used.)

AND_ARRAY_WORD (ArrayInt, ...);
498 35006144 10/2019

Structured Text (ST)
(In this case an explicit type conversion must be carried out using INT_ARR_TO_WORD_ARR
(...);.)

Not all formal parameters must be assigned with a value. The formal parameter types that must be
assigned a value are in the following table:

If no value is allocated to a formal parameter, then the initial value will be used for executing the
function block. If no initial value has been defined then the default value (0) is used.
If a formal parameter is not assigned with a value and the function block/DFB is instanced more
than once, then the following instances are run with the old value.
NOTE: An ANY_ARRAY_xxx input pin not connected will create automatically an hidden array of
1 element.

Public Variables
In addition to inputs and outputs, some function blocks also provide public variables.
These variables transfer statistical values (values that are not influenced by the process) to the
function block. They are used for setting parameters for the function block.
Public variables are a supplement to IEC 61131-3.
The assignment of values to public variables is made via their initial values or assignments.
Example:

Parameter type EDT STRING ARRAY ANY_ARRAY IODDT Device
DDT

STRUCT FB ANY

EFB: Input - - - - / / - / -
EFB:
VAR_IN_OUT

+ + + + + / + / +

EFB: Output - - + + + / - / +
DFB: Input - - - - / + - / -
DFB:
VAR_IN_OUT

+ + + + + + + / +

DFB: Output - - + / / / - / +
+ Actual parameter required
- Actual parameter not required, it's the general rule, but there are exceptions for some FFBs, for instance when

some parameters are used to characterize the information we want to be given by the FFB.
/ not applicable
35006144 10/2019 499

Structured Text (ST)
Public variables are read via the instance name of the function block and the names of the public
variables.
Example:

Private Variables
In addition to inputs, outputs and public variables, some function blocks also provide private
variables.
Like public variables, private variables are used to transfer statistical values (values that are not
influenced by the process) to the function block.
Private variables can not be accessed by user program. These type of variables can only be
accessed by the animation table.
NOTE: Nested DFBs are declared as private variables of the parent DFB. So their variables are
also not accessible through programming, but trough the animation table.
Private variables are a supplement to IEC 61131-3.

Programming Notes
Attention should be paid to the following programming notes:
 Functions blocks are only executed if the input EN = 1 or is not used (see page 504).
 The assignment of variables to ANY or ARRAY output types must be made using the => operator.

Assignments cannot be made outside of the function block call.
The instruction
My_Var := My_SAH.OUT;
is invalid, if the output OUT of the SAH function block is of type ANY.
The instruction
Cal My_SAH (OUT=>My_Var);
is valid.

 Special conditions apply when using VAR_IN_OUT variables (see page 505).
 The use of function blocks consists of two parts in ST:
 Declaration (see page 501)
 calling the function block

 There are two ways of calling a function block:
 Formal call (see page 501) (calling a function with formal parameter names)

This way variables can be assigned to outputs using the => operator.
 Informal call (see page 502) (call without formal parameter names)

 Function block/DFB instances can be called multiple times (see page 504); other than instances
of communication EFBs, which can only be called once.
500 35006144 10/2019

Structured Text (ST)
Declaration
Before calling a function block it must be declared in the variables editor.

Formal Call
With formal calls (calls with formal parameter names), the function block is called using an
instruction sequence made from the function blocks instance names followed a bracketed list of
actual parameter assignments to the formal parameters. Assign input formal parameters using :=
operator, and for output formal parameters using the => operator. The sequence in which the input
formal parameters and output formal parameters are enumerated is not significant.
EN and ENO can be used for this type of call.

Calling a function block with formal parameter names:

Calling the same function block in FBD:

Assigning the value of a function block output is made by entering the actual parameter name,
followed by the assignment instruction := followed by the instance name of the function block and
loading the formal parameter of the function block output (separated by a full-stop).
For example,
MY_COUNT (CU:=var1, R:=reset, PV:=100 + value);
Q := MY_COUNT.out ;
CV := MY_COUNT.current ;
NOTE: Type Array DDTs cannot be assigned this way. However, Type Structure DDTs may be
assigned.
It is not necessary to assign a value to all formal Parameters (see page 498)).
MY_COUNT (CU:=var1, R:=reset, Q=>out, CV=>current);
35006144 10/2019 501

Structured Text (ST)
Calling the same function block in FBD:

Informal Call
With informal calls (call without Formal parameter names), the function block is called using an
instruction made from the function block instance names, followed by a bracketed list of the actual
parameters for the inputs and outputs. The order in which the actual parameters are listed in a
function block call is significant.
EN and ENO cannot be used for this type of call.

Calling a function block without formal parameter names:

Calling the same function block in FBD:

With informal calls it is not necessary to assign a value to all formal Parameters (see page 498)).
This does not apply for VAR_IN_OUT variables, for input parameters with dynamic lengths and
outputs of type ANY. It must always be assigned a variable.

This is a supplement to IEC 61131-3 and must be enabled explicitly.
An empty parameter field is used to skip a parameter.
Call with empty parameter field:
MY_COUNT (var1, , 100 + value, out, current) ;
502 35006144 10/2019

Structured Text (ST)
Calling the same function block in FBD:

An empty parameter field does not have to be used if formal parameters are omitted at the end.
MY_COUNT (var1, reset) ;
Calling the same function block in FBD:

Calling a Function Block without Inputs
Even if the function block has no inputs or the inputs are not to be parameterized, the function block
should be called before its outputs can be used. Otherwise the initial values of the outputs will be
transferred, i.e. "0".
For example:
Calling the function block in ST:
MY_CLOCK () ;MY_COUNT (CU:=MY_CLOCK.CLK1, R:=reset, PV:=100,

Q=>out, CV=>current) ;
Calling the same function block in FBD:
35006144 10/2019 503

Structured Text (ST)
Multiple Function Block Instance Call
Function block/DFB instances can be called multiple times; other than instances of communication
EFBs, these can only be called once.
Calling the same function block/DFB instance more than once makes sense, for example, in the
following cases:
 If the function block/DFB has no internal value or it is not required for further processing.

In this case, memory is saved by calling the same function block/DFB instance more than once
since the code for the function block/DFB is only loaded once.
The function block/DFB is then handled like a "Function".

 If the function block/DFB has an internal value and this is supposed to influence various
program segments, for example, the value of a counter should be increased in different parts of
the program.
In this case, calling the same function block/DFB means that temporary results do not have to
be saved for further processing in another part of the program.

EN and ENO
With all function blocks/DFBs, an EN input and an ENO output can be configured.

If the value of EN is equal to "0", when the function block/DFB is called, the algorithms defined by
the function block/DFB are not executed and ENO is set to "0".

If the value of EN is equal to "1", when the function block/DFB is invoked, the algorithms which are
defined by the function block/DFB will be executed. After the algorithms have been executed
successfully, the value of ENO is set to "1". If an error occurred while executing the algorithms, ENO
is set to "0".
If the EN pin is not assigned a value, when the FFB is invoked, the algorithm defined by the FFB is
executed (same as if EN equals to "1").

If ENO is set to "0" (results from EN=0 or an error during execution), the outputs of the function
block/DFB retain the status from the last cycle in which they were correctly executed.
The output behavior of the function blocks/DFBs does not depend on whether the function
blocks/DFBs are called without EN/ENO or with EN=1.

If EN/ENO are used, the function block call must be formal. The assignment of variables to ENO must
be made using the => operator.
MY_COUNT (EN:=1, CU:=var1, R:=reset, PV:=100 + value,

ENO=>error, Q=>out, CV=>current) ;
504 35006144 10/2019

Structured Text (ST)
Calling the same function block in FBD:

VAR_IN_OUT-Variable
Function blocks are often used to read a variable at an input (input variables), to process it and to
restate the altered values of the same variable (output variables). This special type of input/output
variable is also called a VAR_IN_OUT variable.

The following special features are to be noted when using function blocks/DFBs with VAR_IN_OUT
variables.
 All VAR_IN_OUT inputs must be assigned a variable.
 VAR_IN_OUT inputs may not have literals or constants assigned to them.
 VAR_IN_OUT outputs may not have values assigned to them.
 VAR_IN_OUT variables cannot be used outside of the function block call.

Calling a function block with VAR_IN_OUT variable in ST:
MY_FBLOCK(IN1:=V1, IN2:=V2, IO1:=V3, OUT1=>V4, OUT2=>V5);
Calling the same function block in FBD:

VAR_IN_OUT variables cannot be used outside the function block call.

The following function block calls are therefore invalid:
Invalid call, example 1:

Invalid call, example 2:

InOutFB.inout := V1; Assigning the variables V1 to a VAR_IN_OUT parameter.
Error: The operation cannot be executed since the VAR_IN_OUT parameter
cannot be accessed outside of the function block call.

V1 := InOutFB.inout; Assigning a VAR_IN_OUT parameter to the V1 variable.
Error: The operation cannot be executed since the VAR_IN_OUT parameter
cannot be accessed outside of the function block call.
35006144 10/2019 505

Structured Text (ST)
The following function block calls are always valid:
Valid call, example 1:

Valid call, example 2:

InOutFB (inout:=V1); Calling a function block with the VAR_IN_OUT parameter and formal
assignment of the actual parameter within the function block call.

InOutFB (V1); Calling a function block with the VAR_IN_OUT parameter and informal
assignment of the actual parameter within the function block call.
506 35006144 10/2019

Structured Text (ST)
Procedures

Procedure
Procedures are provided in the form of libraries. The logic of the procedure is created in the
programming language C and may not be modified in the ST editor.
Procedures - like functions - have no internal states. If the input values are the same, the value on
the output is the same for all executions of the procedure. For example, the addition of two values
gives the same result at every execution.
In contrast to functions, procedures do not return a value and support VAR_IN_OUT variables.

Procedures are a supplement to IEC 61131-3 and must be enabled explicitly.

Parameter
"Inputs and outputs" are required to transfer values to or from procedures. These are called formal
parameters.
The current process states are transferred to the formal parameters. These are called actual
parameters.
The following can be used as actual parameters for procedure inputs:
 Variable
 Address
 Literal
 ST Expression
The following can be used as actual parameters for procedure outputs:
 Variable
 Address
The data type of the actual parameters must match the data type of the formal parameters. The
only exceptions are generic formal parameters whose data type is determined by the actual
parameter.
When dealing with generic ANY_BIT formal parameters, actual parameters of the INT or DINT (not
UINT and UDINT) data types can be used.

This is a supplement to IEC 61131-3 and must be enabled explicitly.
Example:
Allowed:
AND (AnyBitParam := IntVar1, AnyBitParam2 := IntVar2);
Not allowed:
AND_WORD (WordParam1 := IntVar1, WordParam2 := IntVar2);
(In this case, AND_INT must be used.)

AND_ARRAY_WORD (ArrayInt, ...);
35006144 10/2019 507

Structured Text (ST)
(In this case an explicit type conversion must be carried out using INT_ARR_TO_WORD_ARR
(...);.

Not all formal parameters must be assigned with a value. You can see which formal parameter
types must be assigned with a value in the following table.

If no value is allocated to a formal parameter, then the initial value will be used for executing the
function block. If no initial value has been defined then the default value (0) is used.

Programming Notes
Attention should be paid to the following programming notes:
 Procedures are only executed if the input EN=1 or the EN input is not used (see also EN and

ENO, page 510).
 Special conditions apply when using VAR_IN_OUT variables (see page 511).
 There are two ways of calling a procedure:
 Formal call (see page 508) (calling a function with formal parameter names)

This way variables can be assigned to outputs using the => operator.
 Informal call (see page 509) (call without formal parameter names)

Formal Call
With formal calls (call with formal parameter names), the procedures are called using an instruction
sequence made from the procedure name, followed by a bracketed list of actual parameter
assignments to the formal parameters. The assignment of the input formal parameter is made
using the := assignment and the output formal parameter is made using the => assignment. The
sequence in which the input formal parameters and output formal parameters are enumerated is
not significant.
EN and ENO can be used for this type of call.

Parameter type EDT STRING ARRAY ANY_ARRAY IODDT STRUCT FB ANY
Input - - + + + + + +
VAR_IN_OUT + + + + + + / +
Output - - - - - - / +
+ Actual parameter required
- Actual parameter not required
/ not applicable
508 35006144 10/2019

Structured Text (ST)
Calling a procedure with formal parameter names:

Calling the same procedure in FBD:

With formal calls it is not necessary to assign a value to all formal parameters (see also Parameter,
page 507).
PROC (IN1:=var1, OUT1=>result1, OUT2=>result2);
Calling the same procedure in FBD:

Informal Call
With informal calls (call without formal parameter names), procedures are called using an
instruction made from the procedure name, followed by a bracketed list of the inputs and outputs
actual parameters. The order that the actual parameters are enumerated in a procedure call is
significant.
EN and ENO cannot be used for this type of call.

Calling a procedure without formal parameter names:
35006144 10/2019 509

Structured Text (ST)
Calling the same procedure in FBD:

With informal calls it is not necessary to assign a value to all formal parameters (see also
Parameter, page 507).
This is a supplement to IEC 61131-3 and must be enabled explicitly.
An empty parameter field is used to skip a parameter.
Call with empty parameter field:
PROC (var1, , result1, result2) ;
Calling the same procedure in FBD:

An empty parameter field does not have to be used if formal parameters are omitted at the end.
PROC (var1, var2, result1) ;
Calling the same procedure in FBD:

EN and ENO
With all procedures, an EN input and an ENO output can be configured.

If the value of EN is equal to "0", when the procedure is called, the algorithms defined by the
procedure are not executed and ENO is set to "0".

If the value of EN is "1" when the procedure is called, the algorithms defined by the function are
executed. After successful execution of these algorithms, the value of ENO is set to "1". If an error
occurs during execution of these algorithms, ENO will be set to "0".

If the EN pin is not assigned a value, when the FFB is invoked, the algorithm defined by the FFB is
executed (same as if EN equals to "1").

If ENO is set to "0" (caused when EN=0 or an error occurred during executing), the outputs of the
procedure are set to "0".
The output behavior of the procedure does not depend on whether the function is called without
EN or with EN=1.
510 35006144 10/2019

Structured Text (ST)
If EN/ENO are used, the procedure call must be formal. The assignment of variables to ENO must
be made using the => operator.
PROC (EN:=1, IN1:=var1, IN2:=var2,

ENO=>error, OUT1=>result1, OUT2=>result2) ;
Calling the same procedure in FBD:

VAR_IN_OUT Variable
Procedures are often used to read a variable at an input (input variables), to process it and to
restate the altered values of the same variable (output variables). This special type of input/output
variable is also called a VAR_IN_OUT variable.

The following special features are to be noted when using procedures with VAR_IN_OUT variables.
 All VAR_IN_OUT inputs must be assigned a variable.
 VAR_IN_OUT inputs may not have literals or constants assigned to them.
 VAR_IN_OUT outputs may not have values assigned to them.
 VAR_IN_OUT variables cannot be used outside of the procedure call.

Calling a procedure with VAR_IN_OUT variable in ST:
PROC2 (IN1:=V1, IN2:=V2, IO1:=V3,

OUT1=>V4, OUT2=>V5) ;
Calling the same procedure in FBD:

VAR_IN_OUT variables cannot be used outside of the procedure call.

The following procedure calls are therefore invalid:
Invalid call, example 1:

InOutProc.inout := V1; Assigning the variables V1 to a VAR_IN_OUT parameter.
Error: The operation cannot be executed since the
VAR_IN_OUT parameter cannot be accessed outside of the
procedure call.
35006144 10/2019 511

Structured Text (ST)
Invalid call, example 2:

The following procedure calls are always valid:
Valid call, example 1:

Valid call, example 2:

V1 := InOutProc.inout; Assigning a VAR_IN_OUT parameter to the V1 variable.
Error: The operation cannot be executed since the
VAR_IN_OUT parameter cannot be accessed outside of the
procedure call.

InOutProc (inout:=V1); Calling a procedure with the VAR_IN_OUT parameter and
formal assignment of the actual parameter within the
procedure call.

InOutProc (V1); Calling a procedure with the VAR_IN_OUT parameter and informal
assignment of the actual parameter within the procedure call.
512 35006144 10/2019

EcoStruxure™ Control Expert
DFB
35006144 10/2019
User Function Blocks (DFB)

Part V
User Function Blocks (DFB)

In This Part
This part presents:
 The user function blocks (DFB)
 The internal structure of DFBs
 Diagnostics DFBs
 The types and instances of DFBs
 The instance calls using different languages

What Is in This Part?
This part contains the following chapters:

Chapter Chapter Name Page
15 Overview of User Function Blocks (DFB) 515
16 Description of User Function Blocks (DFB) 521
17 User Function Blocks (DFB) Instance 531
18 Use of the DFBs from the Different Programming Languages 537
19 User Diagnostics DFB 555
20 Implicit Type Conversion in Control Expert 557
35006144 10/2019 513

DFB
514 35006144 10/2019

EcoStruxure™ Control Expert
Overview of DFBs
35006144 10/2019
Overview of User Function Blocks (DFB)

Chapter 15
Overview of User Function Blocks (DFB)

Subject of this Chapter
This chapter provides an overview of the user function blocks (DFB), and the different steps in their
implementation.

What Is in This Chapter?
This chapter contains the following topics:

Topic Page
Introduction to User Function Blocks 516
Implementing a DFB Function Block 518
35006144 10/2019 515

Overview of DFBs
Introduction to User Function Blocks

Introduction
Control Expert software enables you to create DFB user function blocks, using automation
languages. A DFB is a program block that you write to meet the specific requirements of your
application. It includes:
 one or more sections written in Ladder (LD), Instruction List (IL), Structured Text (ST) or

Functional Block Diagram (FBD) language
 input/output parameters
 public or private internal variables
Function blocks can be used to structure and optimize your application. They can be used
whenever a program sequence is repeated several times in your application, or to set a standard
programming operation (for example, an algorithm that controls a motor, incorporating local safety
requirements).
By exporting then importing these blocks, they can be used by a group of programmers working
on a single application or in different applications.

Benefits of Using a DFB
Using a DFB function block in an application enables you to:
 simplify the design and entry of the program
 increase the legibility of the program
 facilitate the debugging of the application (all of the variables handled by the function block are

identified on its interface)
 reduce the volume of code generated (the code that corresponds to the DFB is only loaded once

- however many calls are made to the DFB in the program, only the data corresponding to the
instances are generated)

Comparison with a Subroutine
Compared to a subroutine, using a DFB makes it possible to:
 set processing parameters more easily
 use internal variables that are specific to the DFB and therefore independent from the

application
 test its operation independently from the application
Furthermore, LD and FBD languages provide a graphic view of the DFBs, facilitating the design
and debugging of your program.

DFB Created with Previous Software Versions
DFBs created using PL7 and Concept must first be converted using the converters that come with
the product, before being used in the application.
516 35006144 10/2019

Overview of DFBs
Domain of Use
The following table shows the domain of use for the DFBs.

(1) IL: Instruction List , ST: Structured Text, LD: LaDder, FBD: Functional Block Diagram language.

Function Domain
PLCs for which DFBs can be used. Premium\Atrium and Quantum
DFB creation software Control Expert
Software with which DFBs can be used. Control Expert
Programming language for creating the DFB code. IL, ST, LD or FBD (1)
Programming language with which DFBs can be used. IL, ST, LD or FBD (1)
35006144 10/2019 517

Overview of DFBs
Implementing a DFB Function Block

Implementation Procedure
There are 3 steps in the DFB function block implementation procedure:

Creation of the DFB Type
This operation consists in designing a model of the DFB you want to use in your application. To do
this, use the DFB editor to define and code all the elements that make up the DFB:
 Description of the function block: name, type (DFB), activation of diagnostics, comment.
 Structure of the function block: parameters, variables, code sections.
NOTE: If you use a DFB that is already in the User-Defined Library and modify it, the new modified
type will be used for any additional instances in the open project. However, the User-Defined
Library remains unchanged.

Description of a DFB Type
The following diagram shows a graphic representation of a DFB model.

The function block comprises the following elements:
 Name: name of the DFB type (max. 32 characters). This name must be unique in the libraries,

the authorized characters used depend on the choice made in the Identifiers area of the
Language extensions tab in the Project Settings (see EcoStruxure™ Control Expert, Operating
Modes):

 Inputs: input parameters (excluding input/output parameters).
 Outputs: output parameters (excluding input/output parameters).
 Inputs/Outputs: input/output parameters.

Step Action
1 Create your DFB model (called: DFB type).
2 Create a copy of this function block, called an instance, every time the DFB is used in the application.
3 Use the DFB instances in your application program.
518 35006144 10/2019

Overview of DFBs
 Public variables: internal variables accessible by the application program.
 Private variables: nested internal variables or DFBs, not accessible by the application program.
 Sections: DFB code sections in LD, IL, ST or FBD.
 Comment of a maximum of 1024 characters. Formatting characters (carriage return, tab, etc.)

are not authorized.
For each type of DFB, a descriptive file is also accessible via a dialog box: size of the DFB, number
of parameters and variables, version number, date of last modification, protection level, etc.

Online Help for DFB Types
It is possible to link an HTML help file to each DFB in the User-Defined Library. This file must:
 Have a name that is identical to the linked DFB,
 Be located in the directory \Schneider Electric\FFBLibset\CustomLib\MyCustomFam\Language

(where Language is named Eng, Fre, Ger, Ita, Spa or Chs according to the language desired).

Creation of a DFB Instance
Once the DFB type is created, you can define an instance of this DFB via the variable editor or
when the function is called in the program editor.

Use of DFB Instances
A DFB instance is used as follows
 as a standard function block in Ladder (LD) or Functional Block Diagram (FBD) language,
 as an elementary function in Structured Text (ST) or Instruction List (IL) language.
A DFB instance can be used in all application program tasks, except event tasks and Sequential
Function Chart (SFC) transitions.

Storage
The DFB types the user creates can be stored (see EcoStruxure™ Control Expert, Operating
Modes) in the function and function block library.
35006144 10/2019 519

Overview of DFBs
520 35006144 10/2019

EcoStruxure™ Control Expert
Description of DFBs
35006144 10/2019
Description of User Function Blocks (DFB)

Chapter 16
Description of User Function Blocks (DFB)

Subject of this Chapter
This chapter provides an overview of the different elements that make up the user function blocks.

What Is in This Chapter?
This chapter contains the following topics:

Topic Page
Definition of DFB Function Block Internal Data 522
DFB Parameters 524
DFB Variables 528
DFB Code Section 529
35006144 10/2019 521

Description of DFBs
Definition of DFB Function Block Internal Data

At a Glance
There are two types of DFB internal data:
 The parameters: Input, Output or Input/Output.
 Public or Private variables.
The internal data of the DFB must be defined using symbols (this data cannot be addressed as an
address).

Elements to Define for Each Parameter
When the function block is created, the following must be defined for each parameter:
 Name: Name of DFB type (max. 32 characters). This name must be unique in the libraries; the

authorized characters used depend on the choice made in the Identifiers area of the Language
extensions tab in Project Settings (see EcoStruxure™ Control Expert, Operating Modes):

 A type of object (BOOL, INT, REAL, etc.).
 A comment of a maximum of 1024 characters (optional). Formatting characters (carriage return,

tab, etc.) are not allowed.
 An initial value.
 The read/write attribute that defines whether the variable may or may not be written in runtime:

R (read only) or R/W (read/write). This attribute must only be defined for public variables.
 The backup attribute that defines whether the variable may or may not be saved.

Types of Objects
The types of objects that may be defined for the DFB parameters belong to the following families:
 Elementary data family: EDT. This family includes the following object types: Boolean (BOOL,

EBOOL), Integer (INT, DINT, etc.), Real (REAL), Character string (STRING), Bit string (BYTE,
WORD, etc.), etc.

 Derived data family: DDT. This family includes table (ARRAY) and structure (user or IODDT)
object types.

 Generic data families: ANY_ARRAY_xxx.
 The function block family: FB. This family includes EFB and DFB object types.
522 35006144 10/2019

Description of DFBs
Authorized Objects for the Different Parameters
For performances reasons, the addressing mode of the DFB parameters must be transferred by
address for the following object families
 Inputs
 Inputs/Outputs
 Outputs
The addressing mode of a Function Block element is linked to the element type. The addressing
modes are passed by:
 Value (VAL)
 Relocation table entry (RTE)
 Logical address: RTE+Offset (L-ADR)
 Logical address and number of elements (L-ADR-LG)
 IO channel structure (IOCHS)
For each of the DFB parameters, the following object families may be used with its associated
addressing modes:

Object
families

EDT STRING Anonymous
or DDT array

DDT (1) IODDT GDT:
ANY_ARRAY_x

FB ANY...

Inputs VAL L-ADR-LG L-ADR-LG L-ADR No L-ADR-LG No L-ADR-LG
Inputs/
outputs

L-ADR(2) L-ADR-LG L-ADR-LG L-ADR IOCHS
(see page 541)

L-ADR-LG No L-ADR-LG

Outputs VAL VAL L-ADR-LG VAL No L-ADR-LG No L-ADR-LG
Public
variables

VAL VAL VAL VAL No No No No

Private
variables

VAL VAL VAL VAL No No RTE No

Key:
(1) Derived data family, except input/output derived data types (IODDT).
(2) Except for EBOOL-type static variables, with Quantum PLCs.

CAUTION
UNEXPECTED APPLICATION BEHAVIOR - ARRAY INDEX
Take into account the shift of the index for ARRAY variables that have a not null start index on
ANY_ARRAY_x entry (the shift equals the start index value).
Failure to follow these instructions can result in injury or equipment damage.
35006144 10/2019 523

Description of DFBs
DFB Parameters

Illustration
This illustration shows some examples of DFB parameters

Description of the Parameters
This table shows the role of each parameter

Legend:
(1) Number of inputs + Number of inputs/outputs less than or equal to 32
(2) Number of outputs + Number of inputs/outputs less than or equal to 32
NOTE: The IODDT related to CANopen devices for Modicon M340 cannot be used as a DFB I/O
parameter. During the analyse/build step of a project, the following message:"This IODDT cannot
be used as a DFB parameter" advises the limitations to the user.

Parameter Maximum
number

Role

Inputs 32 (1) These parameters can be used to transfer the values of the application
program to the internal program of the DFB. They are accessible in read-only
by the DFB, but are not accessible by the application program.

Outputs 32 (2) These parameters can be used to transfer the values of the DFB to the
application program. They are accessible for reading by the application
program except for ARRAY-type parameters.

Inputs/Outputs 32 These parameters may be used to transfer data from the application program
to the DFB, which can then modify it and return it to the application program.
These parameters are not accessible by the application program.
524 35006144 10/2019

Description of DFBs
Parameters that Can Be Accessed by the Application Program
The only parameters that can be accessed by the application program outside the call are output
parameters. To make this possible, the following syntax must be used in the program:
DFB_Name.Parameter_name
DFB_Name represents the name of the instance of the DFB used (maximum of 32 characters).
Parameter_Name represents the name of the output parameter (maximum 32 characters).
Example: Control.Accel indicates the output Accel of the DFB instance called Control

EN and ENO Parameters
EN is an input parameter, and ENO is an output parameter. They are both of BOOL type, and may
or may not be used (optional) in the definition of a DFB type.
Where the user wishes to use these parameters, the editor sets them automatically: EN is the first
input parameter and ENO the first output parameter.
Example of implementation of EN\ENO parameters.

If the EN input parameter of an instance is assigned the value 0 (FALSE), then:
 the section(s) that make up the code of the DFB is/are not executed (this is managed by the

system),
 the ENO output parameter is set to 0 (FALSE) by the system.
If the EN input parameter of an instance is assigned the value 1 (TRUE), then:
 the section(s) that make up the code of the DFB is/are executed (this is managed by the

system),
 the ENO output parameter is set to 1 (TRUE) by the system.
35006144 10/2019 525

Description of DFBs
If an error is detected (for example a processing error) by the DFB instance, the user has the option
of setting the ENO output parameter to 0 (FALSE). In this case:
 either the output parameters are frozen in the state they were in during the previous process

until the fault disappears,
 or the user provides a function in the DFB code whereby the outputs are forced to the required

state until the fault disappears.

VAR_IN_OUT Variable
Function blocks are often used to read a variable at an input (input variables), to process it and to
output the updated values of the same variable (output variables). This special type of input/output
variable is also called a VAR_IN_OUT variable.

The following special features are to be noted when using function blocks/DFBs with VAR_IN_OUT
variables.
 All VAR_IN_OUT inputs must be assigned a variable.
 VAR_IN_OUT inputs may not have literals or constants assigned to them.
 VAR_IN_OUT outputs may not have values assigned to them.
 VAR_IN_OUT variables cannot be used outside the block call.

Calling a function block with a VAR_IN_OUT variable in IL:
CAL MY_FBLOCK(IN1:=V1, IN2:=V2, IO1:=V3,

OUT1=>V4, OUT2=>V5)
Calling the same function block in FBD:

VAR_IN_OUT variables cannot be used outside the function block call.

The following function block calls are therefore invalid:
Invalid call, example 1:

LD V1 Loading a V1 variable in the accumulator
CAL InOutFB Calling a function block with the VAR_IN_OUT parameter.

The accumulator now contains a reference to a VAR_IN_OUT parameter.
AND V2 AND operation on accumulator contents and V2 variable.

Error: The operation cannot be performed since the VAR_IN_OUT parameter (accumulator
contents) cannot be accessed from outside the function block call.
526 35006144 10/2019

Description of DFBs
Invalid call, example 2:

The following function block calls are always valid:
Valid call, example 1:

Valid call, example 2:

LD V1 Loading a V1 variable in the accumulator
AND InOutFB.inout AND operation on accumulator contents and a reference to a VAR_IN_OUT

parameter.
Error: The operation cannot be performed since the VAR_IN_OUT parameter
cannot be accessed from outside the function block call.

CAL InOutFB
(IN1:=V1,inout:=V2

Calling a function block with the VAR_IN_OUT parameter and assigning the
actual parameter within the function block call.

LD V1 Loading a V1 variable in the accumulator
ST InOutFB.IN1 Assigning the accumulator contents to the IN1 parameter of the IN1

function block.
CAL InOutFB(inout:=V2) Calling the function block with assignment of the actual parameter (V2)

to the VAR_IN_OUT parameter.
35006144 10/2019 527

Description of DFBs
DFB Variables

Description of the Variables
This table shows the role of each type of variable.

NOTE: Nested DFBs are declared as private variables of the parent DFB. So their variables are
also not accessible through programming, but trough the data editor and the animation table.

Variables that Can Be Accessed by the Application Program
The only variables that can be accessed by the application program are public variables. To make
this possible, the following syntax must be used in the program: DFB_Name.Variable_Name
DFB_Name represents the name of the instance of the DFB used (maximum of 32 characters),
Variable_Name represents the name of the public variable (maximum of 8 characters).
Example: Control.Gain indicates the public variable Gain of the DFB instance called Control

Saving Public Variables
Setting the %S94 system bit to 1 causes the public variables you have modified to be saved by
program or by adjustment, in place of the initial values of these variables (defined in the DFB
instances).
Replacement is only possible if the backup attribute is correctly set for the variable.

Variable Maximum
number

Role

Public unlimited These internal variables of the DFB may be used by the DFB, by the application
program and by the user in adjust mode.

Private unlimited These internal variables of the DFB can only be used by this function block, and are
therefore not accessible by the application program, but these type of variables can
be accessed by the data editor and the animation table.
These variables are generally necessary to the programming of the block, but are of
no interest to the user (for example, the result of an intermediate calculation, etc.).

NOTICE
APPLICATION UPLOAD NOT SUCCESSFUL
The bit %S94 must not be set to 1 during an upload.
If the bit %S94 is set to 1 upload then the upload may be impossible.
Failure to follow these instructions can result in equipment damage.
528 35006144 10/2019

Description of DFBs
DFB Code Section

General
The code section(s) define(s) the process the DFB is to carry out, as a function of the declared
parameters.
A DFB may contain several code sections; the number of sections being unlimited.

Programming Languages
To program DFB sections, you can use the following languages:
 Instruction List (IL)
 Structured Text (ST)
 Ladder language (LD)
 Functional Block Diagram (FBD)

Defining a Section
A section is defined by:
 a symbolic name that identifies the section (maximum of 32 characters)
 a validation condition that defines the execution of the section
 a comment (maximum of 256 characters)
 a protection attribute (no protection, write-protected section, read/write-protected section)

Programming Rules
When executed, a DFB section can only use the parameters you have defined for the function
block (input, output and input/output parameters and internal variables).
Consequently, a DFB function block cannot use either the global variables of the application, or the
input/output objects, except the system words and bits (%Si, %SWi and %SDi).
A DFB section has maximum access rights (read and write) for its parameters.
35006144 10/2019 529

Description of DFBs
Example of Code
The following program provides an example of Structured Text code
530 35006144 10/2019

EcoStruxure™ Control Expert
DFB instance
35006144 10/2019
User Function Blocks (DFB) Instance

Chapter 17
User Function Blocks (DFB) Instance

Subject of this Chapter
This chapter provides an overview of the creation of a DFB instance, and its execution.

What Is in This Chapter?
This chapter contains the following topics:

Topic Page
Creation of a DFB Instance 532
Execution of a DFB Instance 533
Programming Example for a Derived Function Block (DFB) 534
35006144 10/2019 531

DFB instance
Creation of a DFB Instance

DFB Instance
A DFB instance is a copy of the DFB model (DFB type):
 It uses the DFB type code (the code is not duplicated).
 It creates a data zone specific to this instance, which is a copy of the parameters and variables

of the DFB type. This zone is situated in the application's data area.
You must identify each DFB instance you create with a name of a maximum 32 characters, the
authorized characters used depend on the choice made in the Identifiers area of the Language
extensions tab in the Project Settings (see EcoStruxure™ Control Expert, Operating Modes).
The first character must be a letter! Keywords and symbols are prohibited.

Creation of an Instance
From a DFB type, you can create as many instances as necessary; the only limitation is the size
of the PLC memory.

Initial Values
The initial values of the parameters and public variables that you defined when creating the DFB
type can be modified for each DFB instance.
Not all DFB parameters have an initial value.
Modification of the initial values of the elements in the DFB instances

Modification of the initial values of the elements in the DFB type

EDT (except
String type)

String
Type

EDT DDT
structure

FB ANY_ARRAY IODDT ANY_...

Inputs Yes No No No - No - No
Input/Output No No No No - No No No
Outputs Yes Yes No Yes - - - No
Public variables Yes Yes Yes Yes - - - -
Private Variables Yes Yes Yes Yes No - - -

EDT (except
String type)

String
Type

EDT DDT
structure

FB ANY_ARRAY IODDT ANY_...

Inputs Yes No No No - No - No
Input/Output No No No No - No No No
Outputs Yes Yes No Yes - - - No
Public variables Yes Yes Yes Yes - - - -
Private Variables Yes Yes Yes Yes No - - -
532 35006144 10/2019

DFB instance
Execution of a DFB Instance

Operation
A DFB instance is executed as follows.

NOTE: The internal variables of DFBs are not reinitialized when using Build project online
command after an input modification. To reinitialize all internal variables use Rebuild all project
command.

Debugging of DFBs
The Control Expert software offers several DFB debugging tools:
 animation table: all parameters, and public and private variables are displayed and animated in

real-time. Objects may be modified and forced
 breakpoint, step by step and program diagnostics
 runtime screens: for unitary debugging

Step Action
1 Loading the values in the input and input/output parameters. On initialization (or on cold restart), all

non-assigned inputs take the initial value defined in the DFB type. They then keep the last value
assigned to them.

2 Execution of the internal program of the DFB.
3 Writing the output parameters.
35006144 10/2019 533

DFB instance
Programming Example for a Derived Function Block (DFB)

General
This example of programming a counter using a DFB is provided for instruction purposes.

Characteristics of the DFB Type
The DFB type used to create the counter is as follows.

The elements of the Cpt_parts DFB type are as follows.

Elements Description
Name of the DFB type Cpt_parts
Input parameters  Reset: counter reset (EBOOL type)

 Presel: Preset value of the counter (DINT type)
 Count: upcounter input (EBOOL type)

Output parameters Done: preset value reached output (BOOL type)
Public internal variable V_cour: current value of the counter (DINT type)
534 35006144 10/2019

DFB instance
Operation of the Counter
The operation of the counter must be as follows.

Internal Program of the DFB
The internal program of the DFB type Cpt_parts is defined in Structured Text as follows.

Phase Description
1 The DFB counts the rising edges on the Count input.
2 The number of edges it counts is then stored by the variable V_cour. This variable is reset by

a rising edge on the Reset input.

3 When the number of edges counted is equal to the preset value, the Done output is set to 1.
This variable is reset by a rising edge on the Reset input.
35006144 10/2019 535

DFB instance
Example of Use
Let us suppose your application needs to count 3 part types (for example, bolts, nuts and screws).
The DFB type Cpt_parts can be used three times (3 instances) to perform these different counts.

The number of parts to be procured for each type is defined in the words %MD10, %MD12 and
%MD14 respectively. When the number of parts is reached, the counter sends a command to an
output (%Q1.2.1, %Q1.2.2 or %Q1.2.3) which then stops the procurement system for the
corresponding parts.
The application program is entered in Ladder language as follows. The 3 DFBs (instances)
Cpt_bolts, Cpt_nuts and Cpt_screws are used to count the different parts.
536 35006144 10/2019

EcoStruxure™ Control Expert
Use of DFBs
35006144 10/2019
Use of the DFBs from the Different Programming Languages

Chapter 18
Use of the DFBs from the Different Programming Languages

Subject of this Chapter
This chapter provides an overview of DFB instance calls made using the different programming
languages.

What Is in This Chapter?
This chapter contains the following topics:

Topic Page
Rules for Using DFBs in a Program 538
Use of IODDTs in a DFB 541
Use of a DFB in a Ladder Language Program 544
Use of a DFB in a Structured Text Language Program 546
Use of a DFB in an Instruction List Program 549
Use of a DFB in a Program in Function Block Diagram Language 553
35006144 10/2019 537

Use of DFBs
Rules for Using DFBs in a Program

General
DFB instances can be used in all languages [Instruction List (IL), Structured Text (ST), Ladder (LD)
and Function Block Diagram (FBD)] and in all the tasks of the application program (sections,
subroutine, etc.), except for SFC program transition.

General Rules of Use
When using a DFB, you must comply with the following rules for whatever language is being used:
 It is not necessary to connect all the input, input/output or output parameters, except the

following parameters, which it is compulsory for you to assign:
 input/output parameters
 generic data-type output parameters (ANY_INT, ANY_ARRAY, etc.)

 The following parameters are optional:
 generic data-type input parameters (ANY_INT, ANY_ARRAY, etc.)
 STRING-type input parameters

 Unconnected input parameters keep the value of the previous call or the initialization value
defined for these parameters, if the block has never been called

 All of the objects assigned to the input, input/output and output parameters must be of the same
type as those defined when the DFB type was created (for example: if the type INT is defined
for the input parameter "speed", then you cannot assign it the type DINT or REAL)
The only exceptions are BOOL and EBOOL types for input and output parameters (not for
input/output parameters), which can be mixed.
Example: The input parameter "Validation" may be defined as BOOL and associated with a %Mi
internal bit of type EBOOL. However, in the internal code of the DFB type, the input parameter
actually has BOOL-type properties (it cannot manage edges).

Assignment of Parameters
The following table summarizes the different possibilities for assigning parameters in the different
programming languages.

Parameter Type Assignment of the parameter (1) Assignment
Inputs EDT (2) Connected, value, object or expression Optional (3)

BOOL Connected, value, object or expression Optional
DDT Connected, value or object Optional
Device DDT Connected or object Compulsory
ANY_... Connected or object Optional
ANY_ARRAY Connected or object Optional
538 35006144 10/2019

Use of DFBs
(1) Connected in Ladder (LD) or Function Block Diagram (FBD) language. Value or object in
Instruction List (IL) or Structured Text (ST) language.
(2) Except BOOL-type parameters
(3) Except for STRING-type parameters that is compulsory.

Rules when using DFBs with arrays

When using dynamic arrays, it is mandatory to check the sizes of arrays that are identical. In
specific case, using dynamic arrays as an output or input/output, an overflow could lead to
improper execution of the program and stop of the PLC.
This behavior occurs if the following conditions are fulfilled simultaneously:
 Use of a DFB with at least one output or I/O parameter of dynamic array type

(ANY_ARRAY_XXX).
 In the coding of a DFB, use of a function or function block (FFB of type FIFO, LIFO, MOVE,

MVX, T2T, SAH or SEL). Note that, the function or FFB needs two ANY type parameters with
at least one defined on the output.

 The DFB parameter of the dynamic array is used in writing during the FFB call (on the ANY type
parameter). For other ANY parameters, an array with a fixed size is used.

 The size of the fixed size array is bigger than the size of the dynamic array calculated to store
the result.

Inputs/outputs EDT Connected or object Compulsory
DDT Connected or object Compulsory
Device DDT Connected or object Compulsory
IODDT Connected or object Compulsory
ANY_... Connected or object Compulsory
ANY_ARRAY Connected or object Compulsory

Outputs EDT Connected or object Optional
DDT Connected or object Optional
ANY_... Connected or object Compulsory
ANY_ARRAY Connected or object Compulsory

Parameter Type Assignment of the parameter (1) Assignment

WARNING
UNEXPECTED EQUIPMENT OPERATION
Check the size of arrays when copying from source into target arrays using DFBs.
Failure to follow these instructions can result in death, serious injury, or equipment damage.
35006144 10/2019 539

Use of DFBs
Example for checking the size of arrays
The following example shows how to check the size of arrays using the function LENGTH_ARWORD
in a DFB.

In this example, Table_1 is an array with a fixed size, Table_2 is a dynamic array of type
ANY_ARRAY_WORD. This program checks the size of each array. The functions LENGTH_ARWORD
compute the size of each array in order to condition the execution of the MOVE function.
540 35006144 10/2019

Use of DFBs
Use of IODDTs in a DFB

At a Glance
The following tables present the different IODDTs for the Modicon M340, Modicon M580, Premium
and Quantum PLCs that can be used in a DFB (exclusively as input/output (see page 523))
parameters.

IOODT that Can Be Used in a DFB
The following table lists the IODDTs of the different application for Modicon M340, Modicon M580,
Premium, and Quantum PLCs that can be used in a DFB:

IODDT families Modicon
M340

Modicon
M580

Premium Quantum

Discrete application
T_DIS_IN_GEN No No No No
T_DIS_IN_STD No No No No
T_DIS_EVT No No No No
T_DIS_OUT_GEN No No No No
T_DIS_OUT_STD No No No No
T_DIS_OUT_REFLEX No No No No
Analog application
T_ANA_IN_GEN No No No No
T_ANA_IN_STD No No No No
T_ANA_IN_CTRL No Yes(1.) Yes No

T_ANA_IN_EVT No Yes(1.) Yes No

T_ANA_OUT_GEN No No No No
T_ANA_OUT_STD No No No No
T_ANA_OUT_STDX No No Yes No
T_ANA_IN_BMX Yes Yes No No
T_ANA_IN_T_BMX Yes Yes No No
T_ANA_OUT_BMX Yes Yes No No
T_ANA_IN_VE No No No No
T_ANA_IN_VWE No No No No
T_ANA_BI_VWE No No No No
T_ANA_BI_IN_VWE No No No No
1. Premium module on extendable rack only
35006144 10/2019 541

Use of DFBs
Counting application
T_COUNT_ACQ No Yes(1.) Yes No

T_COUNT_HIGH_SPEED No Yes(1.) Yes No

T_COUNT_STD No Yes(1.) Yes No

T_SIGN_CPT_BMX Yes Yes No No
T_UNSIGN_CPT_BMX Yes Yes No No
T_CNT_105 No No No No
Electronic cam application
T_CCY_GROUP0 No No No No
T_CCY_GROUP1_2_3 No No No No
Axis control application
T_AXIS_AUTO No No Yes No
T_AXIS_STD No No Yes No
T_INTERPO_STD No No Yes No
T_STEPPER_STD No No Yes No
Sercos application
T_CSY_CMD No No Yes No
T_CSY_TRF No No Yes No
T_CSY_RING No No Yes No
T_CSY_IND No No Yes No
T_CSY_FOLLOW No No Yes No
T_CSY_COORD No No Yes No
T_CSY_CAM No No Yes No
Communication application
T_COM_STS_GEN Yes Yes Yes No
T_COM_UTW_M No No Yes No
T_COM_UTW_S No No Yes No
T_COM_MB No No Yes No
T_COM_CHAR No No Yes No
T_COM_FPW No No Yes No
T_COM_MBP No No Yes No
T_COM_JNET No No Yes No

IODDT families Modicon
M340

Modicon
M580

Premium Quantum

1. Premium module on extendable rack only
542 35006144 10/2019

Use of DFBs
T_COM_ASI No No Yes No
T_COM_ETY_1X0 No No Yes No
T_COM_ETY_210 No No Yes No
T_COM_IBS_128 No No Yes No
T_COM_IBS_242 No No Yes No
T_COM_PBY No No Yes No
T_COM_CPP100 No No Yes No
T_COM_ETYX103 No No Yes No
T_COM_ETHCOPRO No No Yes No
T_COM_MB_BMX Yes Yes No No
T_COM_CHAR_BMX Yes Yes No No
T_COM_CO_BMX Yes Yes No No
T_COM_ETH_BMX Yes Yes No No
Adjustment application
T_PROC_PLOOP No No Yes No
T_PROC_3SING_LOOP No No Yes No
T_PROC_CASC_LOOP No No Yes No
T_PROC_SPP No No Yes No
T_PROC_CONST_LOOP No No Yes No
Weiging application
T_WEIGHING_ISPY101 No Yes(1.) Yes No

Common to all applications
T_GEN_MOD No No No No

IODDT families Modicon
M340

Modicon
M580

Premium Quantum

1. Premium module on extendable rack only
35006144 10/2019 543

Use of DFBs
Use of a DFB in a Ladder Language Program

Principle
In Ladder language, there are two possible ways of calling a DFB function block:
 via a textual call in an operation block in which the syntax and constraints on the parameters

are identical to those of Structured Text language
 via a graphic call
The inputs of the function blocks may be connected or assigned a value, an object or an
expression. In any case, the type of external element (value, evaluation of the expression, etc.)
must be identical to that of the input parameter.
A DFB block must have at least one connected Boolean input and an output (if necessary). For this
you may use the EN input parameters and the ENO output parameter (see the description of these
parameters below).
It is compulsory to connect or assign the ANY_ARRAY-type inputs, the generic data-type outputs
(ANY_...) and the input/outputs of a DFB block.

Graphic Representation of a DFB Block
The following illustration shows a simple DFB programming example.
544 35006144 10/2019

Use of DFBs
Elements of the DFB Block
The following table lists the different elements of the DFB block, labeled in the above illustration.

Use of EN\ENO Parameters
See EN and ENO Parameters, page 525

Label Element
1 Name of the DFB (instance)
2 Name of the DFB type
3 Input assigned by an expression
4 Input assigned by a value
5 Connected input
6 Input assigned by an object (address or symbol)
7 Input parameters
8 Output parameters
9 Input/output parameters
35006144 10/2019 545

Use of DFBs
Use of a DFB in a Structured Text Language Program

Principle
In Structured Text, a user function block is called by a DFB call: name of the DFB instance followed
by a list of arguments. Arguments are displayed in the list between brackets and separated by
commas.
The DFB call can be of one of two types:
 a formal call, when arguments are assignments (parameter = value). In this case, the order in

which the arguments are entered in the list is not important.
The EN input parameter and the ENO output parameter can be used to control the execution of
the function block

 an informal call, when arguments are values (expression, object or an immediate value). In this
case, the order in which the arguments are entered in the list must follow the order of the DFB
input parameters, including for non-assigned inputs (the argument is an empty field)
It is not possible to use EN and ENO parameters.

DFB_Name (argument 1,argument 2,....,argument n)
NOTE: The ANY_ARRAY-type inputs, generic data-type outputs (ANY_...) and input/outputs of a
DFB must be assigned.

Use of EN\ENO Parameters
See EN and ENO Parameters, page 525

Example of a DFB
The following simple example explains the different DFB calls in Structured Text language. This is
the instance Cpt_1 of the Cpt_parts: type DFB.
546 35006144 10/2019

Use of DFBs
Formal DFB Call
The formal DFB call Cpt_1 is performed with the following syntax:
Cpt_1 (Reset:=Clear, Presel:=P_Select, Count:=100, Done=>%Q1.2.1);
Where the input parameters assigned by a value (expression, object or immediate value) are
entered in the list of arguments, the syntax is:
Cpt_1 (Reset:=Clear, Presel:=P_Select, Count:=100);
...
%Q1.2.1:=Cpt_1.Done;

Elements of the Sequence
The following table lists the different elements of the program sequence, when a formal DFB call
is made.

Informal DFB Call
The informal DFB call Cpt_1 is performed with the following syntax:
Cpt_1 (Clear, %MD10, , 100);
...
%Q1.2.1:=Cpt_1.Done;

Element Meaning
Cpt_1 Name of the DFB instance
Reset, Presel, Count Input parameters
:= Assignment symbol of an input
Clear Assignment object of an input (symbol)
100 Assignment value of an input
Done Output parameter
=> Assignment symbol of an output
%Q1.2.1 Assignment object of an output (address)
; End of sequence symbol
, Argument separation symbol
35006144 10/2019 547

Use of DFBs
Elements of the Sequence
The following table lists the different elements of the program sequence, when a formal DFB call
is made.

Element Meaning
Cpt_1 Name of the DFB instance
Clear, %MD10, ,100 Assignment object or value of the inputs. Non-assigned inputs are represented

by an empty field
; End of sequence symbol
, Argument separation symbol
548 35006144 10/2019

Use of DFBs
Use of a DFB in an Instruction List Program

Principle
In Instruction List, a user function block is called by a CAL instruction, followed by the name of the
DFB instance as an operand and a list of arguments (optional). Arguments are displayed in the list
between brackets and separated by commas.
In Instruction List, there are three possible ways of calling a DFB:
 The instruction CAL DFB_Name is followed by a list of arguments that are assignments

(parameter = value). In this case, the order in which the arguments are entered in the list is not
important.
The EN input parameter can be used to control the execution of the function block.

 The instruction CAL DFB_Name is followed by a list of arguments that are values (expression,
object or immediate value). In this case, the order in which the arguments are entered in the list
must follow the order of the DFB input parameters, including for non-assigned inputs (the
argument is an empty field).
It is not possible to use EN and ENO parameters.

 The instruction CAL DFB_Name is not followed by a list of arguments. In this case, this
instruction must be preceded by the assignment of the input parameters, via a register: loading
of the value (Load) then assignment to the input parameter (Store). The order of assignment of
the parameters (LD/ST) is not important; however, you must assign all the required input
parameters before executing the CAL command. It is not possible to use EN and ENO
parameters.

CAL DFB_Name (argument 1,argument 2,...,argument n)
or
LD Value 1
ST Parameter 1
...
LD Value n
ST Parameter n
CAL DFB_Name
NOTE: The ANY_ARRAY-type inputs, generic data-type outputs (ANY_...) and input/outputs of a
DFB must be assigned.

Use of EN\ENO Parameters
See EN and ENO Parameters, page 525.
35006144 10/2019 549

Use of DFBs
Example of a DFB
The following example explains the different calls of a DFB in Instruction List. This is the instance
Cpt_1 of the Cpt_parts: type DFB

DFB Call when the Arguments Are Assignments
When the arguments are assignments, the DFB call Cpt_1 is performed with the following syntax:
CAL Cpt_1 (Reset:=Clear, Presel:=%MD10, Count:=100, Done=>%Q1.2.1)
Where the input parameters assigned by a value (expression, object or immediate value) are
entered in the list of arguments, the syntax is:
CAL Cpt_1 (Reset:=Clear, Presel:=%MD10, Count:=100)
...
LD Cpt_1.Done
ST %Q1.2.1
In order to make your application program more legible, you can enter a carriage return after the
commas that separate the arguments. The sequence then takes the following syntax:
CAL Cpt_1(
Reset:=Clear,
Presel:=%MD10,
Count:=100,
Done=>%Q1.2.1)
550 35006144 10/2019

Use of DFBs
Elements of the DFB Call Program
The following table lists the different elements of the DFB call program.

DFB Call when the Arguments Are Values
When the arguments are values, the DFB call Cpt_1 is performed with the following syntax:
CAL Cpt_1 (Clear, %MD10,, 100)
...
LD Cpt_1.Done
ST %Q1.2.1

Elements of the DFB Call Program
The following table lists the different elements of the DFB call program.

Element Meaning
CAL DFB call instruction
Cpt_1 Name of the DFB instance
Reset, Presel, Count Input parameters
:= Assignment symbol of an input
Clear, %MD10, 100 Assignment object or value of the inputs
Done Output parameter
=> Assignment symbol of an output
%Q1.2.1 Assignment object of an output
, Argument separation symbol

Element Meaning
CAL DFB call instruction
Cpt_1 Name of the DFB instance
Clear, %MD10, 100 Assignment object or value of the inputs
, Argument separation symbol
35006144 10/2019 551

Use of DFBs
DFB Call with no Argument
When there is no argument, the DFB call Cpt_1 is performed with the following syntax:
LD Clear
ST Cpt_1.Reset
LD %MD10
ST Cpt_1.Presel
LD 100
ST Cpt_1.Count
CAL Cpt_1(
...
LD Cpt_1.Done
ST %Q1.2.1

Elements of the DFB Call Program
The following table lists the different elements of the DFB call program.

Element Meaning
LD Clear Load instruction to load the Clear value into a register

ST Cpt_1.Reset Assign instruction to assign the contents of the register to the input parameter
Cpt_1.Reset

CAL Cpt_1(Call instruction for the DFB Cpt_1
552 35006144 10/2019

Use of DFBs
Use of a DFB in a Program in Function Block Diagram Language

Principle
In FBD (Function Block Diagram) language, the user function blocks are represented in the same
way as in Ladder language and are called graphically.
The inputs of the user function blocks may be connected or assigned a value, an immediate object
or an expression. In any case, the type of external element must be identical to that of the input
parameter.
Only one object can be assigned (link to another block with the same variable) to an input of the
DFB. However, several objects may be connected to a single output.
A DFB block must have at least one connected Boolean input and an output (if necessary). For
this, you can use an EN input parameter and an ENO output parameter.
It is compulsory to connect or assign the ANY_ARRAY-type inputs, the generic data-type outputs
(ANY_...) and the input/outputs of a DFB block.

Graphic Representation of a DFB Block
The following illustration shows a simple DFB programming example.
35006144 10/2019 553

Use of DFBs
Elements of the DFB Block
The following table lists the different elements of the DFB block, labeled in the above illustration.

Use of EN\ENO Parameters
See EN and ENO Parameters, page 525.

Label Element
1 Name of the DFB (instance)
2 Name of the DFB type
3 Input assigned by an object (symbol)
4 Input assigned by a value
5 Connected input
6 Input parameters
7 Output parameter
8 Input assigned by an object (address)
554 35006144 10/2019

EcoStruxure™ Control Expert
Diagnostics DFB
35006144 10/2019
User Diagnostics DFB

Chapter 19
User Diagnostics DFB

Presentation of User Diagnostic DFBs

General
The Control Expert application is used to create your own diagnostic DFBs (see EcoStruxure™
Control Expert, Operating Modes).
These diagnostic DFBs are standard DFBs that you will have configured beforehand with the
Diagnostic property and in which you will have used the following two functions:
 REGDFB (see EcoStruxure™ Control Expert, Diagnostics, Block Library) to save the alarm

date
 DEREG (see EcoStruxure™ Control Expert, Diagnostics, Block Library) to de-register the

alarm
NOTE: It is strongly recommended to only program a diagnostic DFB instance once within the
application.
These DFBs enable you to monitor your process. They will automatically report the information you
will have chosen in the Viewer. You can thus monitor changes in state or variations in your process.

Advantages
The main advantages inherent in this service are as follows:
 The diagnostic is integrated in the project, and can thus be conceived during development and

therefore better meets the user's requirements.
 The error dating and recording system is done at the source (in the PLC), which means the

information exactly represents the state of the process.
 You can connect a number of Viewers (Control Expert, Magelis, Factory Cast) which will

transcribe the exact state of the process to the user. Each Viewer is independent, and any
action performed on one (for example, an acknowledgement) is automatically viewed on the
others.
35006144 10/2019 555

Diagnostics DFB
556 35006144 10/2019

EcoStruxure™ Control Expert
Implicit Type Conversion
35006144 10/2019
Implicit Type Conversion in Control Expert

Chapter 20
Implicit Type Conversion in Control Expert

At a Glance
This chapter explains implicit type conversion in Control Expert.

What Is in This Chapter?
This chapter contains the following topics:

Topic Page
Control Expert Implicit Type Conversion 558
Control Expert Differences from IEC Recommendations 560
35006144 10/2019 557

Implicit Type Conversion
Control Expert Implicit Type Conversion

Introduction
Control Expert provides a set of optional implicit type conversion. By checking the option Enable
implicit type conversion in Project Settings (see EcoStruxure™ Control Expert, Operating Modes)
the types conversions are implicitly done and you do not need to use most of the explicit type to
type functions you used before.

Implicit Type Conversion Rules
After an implicit conversion, system bit %S18 (see EcoStruxure™ Control Expert, System Bits and
Words, Reference Manual) is set to one to indicate a possible side-effect:
 loss of accuracy
 range mismatches
 unexpected implementation-dependent behavior
The formal test of the value of system bit %S18 is the responsibility of the programmer, the
application must manage the behavior of its operative part.

NOTICE
UNINTENDED EQUIPMENT OPERATION
Check the system bit %S18 (via the application) after an implicit conversion.
Failure to follow these instructions can result in equipment damage.
558 35006144 10/2019

Implicit Type Conversion
The implicit type conversion rules:

Precedence

Target Data Type
Source
Data
Type

R
EAL

D
IN

T

IN
T

U
D

IN
T

U
IN

T

D
W

O
R

D

W
O

R
D

BYTE

BO
O

L

H
ighest →

 . →
 . →

 . →
 . →

 . →
 . →

REAL x I I I I E E E E
DINT I x I I I I I I E
INT I(IEC) I(IEC) x I I I I I E
UDINT I I I x I I I I E
UINT I(IEC) I(IEC) I I(IEC) x I I I E
DWORD I I I I I x I I E
WORD I I I I I I(IEC) x I E
BYTE I I I I I I(IEC) I(IEC) x E
BOOL I I I I I I(IEC) I(IEC) I(IEC) x

x No data type conversion is necessary.
I Implicit data conversions available in Control Expert in addition to the IEC recommendations. If the result

of the conversion does not fit the Data Type, the implicit conversion is done and system bit %S18 is set.
I(IEC) Implicit data conversions in Control Expert that meet the IEC recommendations; explicit type

conversions are allowed.
E Explicit data type conversions are required.
35006144 10/2019 559

Implicit Type Conversion
Control Expert Differences from IEC Recommendations

Introduction
According to IEC, the data type of the result variable does not influence the data type of the result
expression and the expression data type is converted to the result data type.
Example:
i_DINT := REAL1+REAL2;
Equivalent using explicit type conversion:
e_DINT := REAL_TO_DINT(REAL1+REAL2);
NOTE: Implicit type conversion is not available for the SFC and LL984 programming languages.

Control Expert Differences
Control Expert has these exceptions to the IEC Recommendations:
1. If the result variable data type of an assignment is bigger than the result expression type, the

parameters of the result expression are converted to the output parameter type to avoid an
expression overflow.
Example:
i_DINT := INT1 + INT2;
Equivalent using explicit type conversion:
e_DINT := INT_TO_DINT(INT1) + INT_TO_DINT(INT2);

2. Control Expert uses implicit type conversion for generic functions, the data type of the result
variable has an influence on the data type of the result expression (generic function).
Example:
i_DINT := ADD (IN1 := INT1, IN2 := INT2);
Equivalent using explicit type conversion:
e_DINT := ADD (IN1 := INT_TO_DINT(INT1), IN2 := INT_TO_DINT(INT2));

Generic output parameters of function blocks have no influence on the data type of the result
expression.
Type conversions of non-matching input parameters are executed before the FFB-body is called
and type conversions of output parameters are executed after the call. Implicit type conversions
are, in contrast to explicit type conversions, only executed when the FFB-body is called.
Example:
SAH_0 (IN := BYTE1, CLK := BOOL1, PV := WORD1, OUT => i_DINT);
The next 3 lines are needed to get an equivalent result, using explicit type conversion:
word_tmp := DINT_TO_WORD(e_DINT);
SAH_0 (IN := BYTE_TO_WORD(BYTE1), CLK := BOOL1, PV := WORD1, OUT =>
_word_tmp);
e_DINT := WORD_TO_DINT(word_tmp);
560 35006144 10/2019

Implicit Type Conversion
The implicit type conversion rules are only applicable to typed constants. Control Expert treats
untyped constants (literal values) initially as DINT constants.
Examples:
i_INT := 5 / 6 * 5.52;
Equivalent using explicit type conversion:
e_INT := REAL_TO_INT(DINT_TO_REAL(5) / DINT_TO_REAL(6) * 5.52);

i_BOOL := (65535 < INT1) = (BYTE1 = 255);
Equivalent using explicit type conversion:
e_BOOL := (65535 < INT_TO_DINT(INT1)) = (BYTE_TO_DINT(BYTE1) = 255);
Control Expert supports implicit type conversion inside expressions.
Examples:
i_INT := BYTE1 = DINT1;
Equivalent using explicit type conversion:
e_INT := BOOL_TO_INT(BYTE_TO_DINT(BYTE1) = DINT1);

i_WORD := BYTE1 = (REAL1 > DINT1);
Equivalent using explicit type conversion:
e_WORD := BOOL_TO_WORD(BYTE1 = BOOL_TO_BYTE((REAL1 >
DINT_TO_REAL(DINT1))));

i_REAL := WORD1 OR BYTE1 AND (100000 + 5);
Equivalent using explicit type conversion:
e_REAL:= DINT_TO_REAL(WORD_TO_DINT(WORD1) OR (BYTE_TO_DINT(BYTE1) AND
(100000 + 5)));
35006144 10/2019 561

Implicit Type Conversion
562 35006144 10/2019

EcoStruxure™ Control Expert

35006144 10/2019
Appendices
35006144 10/2019 563

564 35006144 10/2019

EcoStruxure™ Control Expert
IEC Compliance
35006144 10/2019
IEC Compliance

Appendix A
IEC Compliance

Overview
This chapter contains the compliance tables required by IEC 61131-3.

What Is in This Chapter?
This chapter contains the following sections:

Section Topic Page
A.1 General Information regarding IEC 61131-3 566
A.2 IEC Compliance Tables 568
A.3 Extensions of IEC 61131-3 591
A.4 Textual language syntax 593
35006144 10/2019 565

IEC Compliance
General Information regarding IEC 61131-3

Section A.1
General Information regarding IEC 61131-3

General information about IEC 61131-3 Compliance

At a Glance
The IEC 61131-3 Standard (cf. its subclause 1.4) specifies the syntax and semantics of a unified
suite of programming languages for programmable controllers. These consist of two textual
languages, IL (Instruction List) and ST (Structured Text), and two graphical languages, LD (Ladder
Diagram) and FBD (Function Block Diagram).
Additionally, Sequential Function Chart (SFC) language elements are defined for structuring the
internal organization of programmable controller programs and function blocks. Also, configuration
elements are defined which support the installation of programmable controller programs into
programmable controller systems.
NOTE: Control Expert uses the English acronyms for the programming languages.
Further more, features are defined which facilitate communication among programmable
controllers and other components of automated systems.

Control Expert compliance to IEC 61131-3
The current version of the Control Expert Programming System supports a compliant subset of the
language elements defined in the Standard.
Compliance in this context means the following:
 The Standard allows an implementer of an IEC Programming System to choose or to drop

specific language features or even complete languages out of the Feature Tables which form
an inherent part of the specifications; a system claiming compliance to the Standard just has to
implement the chosen features according to the specifications given in the Standard.

 Further on, the Standard allows an implementer to use the defined programming language
elements in an interactive programming environment. Since the Standard explicitely states that
the specification of such environments is beyond its scope, the implementer has certain degrees
of freedom in providing optimized presentation and handling procedures for specific language
elements to the benefit of the user.

 Control Expert uses these degrees of freedom e.g. by introducing the notion of "Project" for the
combined handling of the IEC language elements "Configuration" and "Resource". It also uses
them e.g. in the mechanisms provided for handling variable declarations or function block
instantiations.
566 35006144 10/2019

IEC Compliance
IEC standards tables
The supported features and other implementation specific information is given in the following
compliance statement and the subsequent tables as required by the Standard.
35006144 10/2019 567

IEC Compliance
IEC Compliance Tables

Section A.2
IEC Compliance Tables

Overview
This system complies with the requirements of IEC 61131-3 for the language and feature listed in
the following tables.

What Is in This Section?
This section contains the following topics:

Topic Page
Common elements 569
IL language elements 581
ST language elements 583
Common graphical elements 584
LD language elements 585
Implementation-dependent parameters 586
Error Conditions 589
568 35006144 10/2019

IEC Compliance
Common elements

Common elements
IEC compliance table for common elements:

Table No. Feature No. Description of Feature
1 2 Lower case characters

3a Number sign (#)
4a Dollar sign ($)
5a Vertical bar (|)

2 1 Upper case and numbers
2 Upper and lower case, numbers, embedded underlines
3 Upper and lower case , numbers, leading or embedded underlines

3 1 Comments
3a 1 Pragmas
4 1 Integer literals

2 Real literals
3 Real literals with exponents
4 Base 2 literals
5 Base 8 literals
6 Base 16 literals
7 Boolean zero and one
8 Boolean FALSE and TRUE
9 Typed literals

5 1 Single-byte character strings
3 Single-byte typed string literals

6 2 Dollar sign
3 Single quote
4 Line feed
5 New line
6 Form feed (page)
7 Carriage return
8 Tab
9 Double quote
35006144 10/2019 569

IEC Compliance
7 1a Duration literals without underlines: short prefix
1b long prefix
2a Duration literals with underlines: short prefix
2b long prefix

8 1 Date literals (long prefix)
2 Date literals (short prefix)
3 Time of day literals (long prefix)
4 Time of day literals (short prefix)
5 Date and time literals (long prefix)
5 Date and time literals (short prefix)

10 1 Data type BOOL
3 Data type INT
4 Data type DINT
7 Data type UINT
8 Data type UDINT
10 Data type REAL
12 Data type TIME
13 Data type DATE
14 Data type TIME_OF_DAY or TOD
15 Data type DATE_AND_TIME or DT
16 Data type STRING
17 Data type BYTE
18 Data type WORD
19 Data type DWORD

12 4 Array data types
5 Structured data types

14 4 Initialization of array data types
6 Initialization of derived structured data types

Table No. Feature No. Description of Feature
570 35006144 10/2019

IEC Compliance
15 1 Input location
2 Output location
3 Memory location
4 Single bit size (X Prefix)
5 Single bit size (No Prefix)
7 Word (16 bits) size
8 Double word (32 bits) size
9 Long (quad) word (64 bits) size

17 3 Declaration of locations of symbolic variables (Note 5, page 578)
4 Array location assignment (Note 5, page 578)
5 Automatic memory allocation of symbolic variables
6 Array declaration (Note 11, page 579)
7 Retentive array declaration (Note 11, page 579)
8 Declaration for structured variables

18 1 Initialization of directly represented variables (Note 11, page 579)
3 Location and initial value assignment to symbolic variables
4 Array location assignment and initialization
5 Initialization of symbolic variables
6 Array initialization (Note 11, page 579)
7 Retentive array declaration and initialization (Note 11, page 579)
8 Initialization of structured variables
9 Initialization of constants
10 Initialization of function block instances

19 1 Negated input
2 Negated output

19a 1 formal function / function block call
2 non-formal function / function block call

20 1 Use of EN and ENO shown in LD

2 Usage without EN and ENO shown in FBD

20a 1 In-out variable declaration (textual)
2 In-out variable declaration (graphical)
3 Graphical connection of in-out variable to different variables (graphical)

21 1 Overloaded functions
2 Typed functions

Table No. Feature No. Description of Feature
35006144 10/2019 571

IEC Compliance
22 1 *_TO_** (Note 1, page 577)

2 TRUNC (Note 2, page 577)

3 *_BCD_TO_** (Note 3, page 577)

4 **_TO_BCD_* (Note 3, page 577)

23 1 ABS function

2 SQRT function

3 LN function

4 LOG function

5 EXP function

6 SIN function

7 COS function

8 TAN function

9 ASIN function

10 ACOS function

11 ATAN function

24 12 ADD function

13 MUL function

14 SUB function

15 DIV function

16 MOD function

17 EXPT function

18 MOVE function

25 1 SHL function

2 SHR function

3 ROR function

4 ROL function

26 5 AND function

6 OR function

7 XOR function

8 NOT function

Table No. Feature No. Description of Feature
572 35006144 10/2019

IEC Compliance
27 1 SEL function

2a MAX function

2b MIN function

3 LIMIT function

4 MUX function

28 5 GT function

6 GE function

7 EQ function

8 LE function

9 LT function

10 NE function

29 1 LEN function (Note 4, page 578)

2 LEFT function (Note 4, page 578)

3 RIGHT function (Note 4, page 578)

4 MID function (Note 4, page 578)

6 INSERT function (Note 4, page 578)

7 DELETE function (Note 4, page 578)

8 REPLACE function (Note 4, page 578)

9 FIND function (Note 4, page 578)

Table No. Feature No. Description of Feature
35006144 10/2019 573

IEC Compliance
30 1a ADD function (Note 6, page 579)

1b ADD_TIME function

2b ADD_TOD_TIME function

3b ADD_DT_TIME function

4a SUB function (Note 6, page 579)

4b SUB_TIME function

5b SUB_DATE_DATE function

6b SUB_TOD_TIME function

7b SUB_TOD_TOD function

8b SUB_DT_TIME function

9b SUB_DT_DT function

10a MUL function (Note 6, page 579)

10b MULTIME function

11a DIV function function (Note 6, page 579)

11b DIVTIME function

33 1a RETAIN qualifier for internal variables (Note 11, page 579)

2a RETAIN qualifier for output variables (Note 11, page 579)

2b RETAIN qualifier for input variables (Note 11, page 579)

3a RETAIN qualifier for internal function blocks (Note 11, page 579)

4a VAR_IN_OUT declaration (textual)

4b VAR_IN_OUT declaration and usage (graphical)

4c VAR_IN_OUT declaration with assignment to different variables (graphical)

34 1 Bistable Function Block (set dominant)
2 Bistable Function Block (reset dominant)

35 1 Rising edge detector
2 Falling edge detector

Table No. Feature No. Description of Feature
574 35006144 10/2019

IEC Compliance
36 1a CTU (Up-counter) function block

1b CTU_DINT function block

1d CTU_UDINT function block

2a CTD (Down-counter) function block

2b CTD_DINT function block

2d CTD_UDINT function block

3a CTUD (Up-down-counter) function block

3b CTUD_DINT function block

3d CTUD_UDINT function block

37 1 TP (Pulse) function block

2a TON (On delay) function block

3a TOF (Off delay) function block

39 19 Use of directly represented variables
40 1 Step and initial step - Graphical form with directed links

3a Step flag – General form
4 Step elapsed time– General form

41 7 Use of transition name
7a Transition condition linked through transition name using LD language
7b Transition condition linked through transition name using FBD language
7c Transition condition linked through transition name using IL language
7d Transition condition linked through transition name using ST language

42 1 Any Boolean variable declared in a VAR or VAR_OUTPUT block, or their
graphical equivalents, can be an action

2l Graphical declaration of action in LD language
2f Graphical declaration of action in FBD language
3s Textual declaration of action in ST language
3i Textual declaration of action in IL language

43 1 Action block physically or logically adjacent to the step (Note 7, page 579)
2 Concatenated action blocks physically or logically adjacent to the step

(Note 8, page 579)
44 1 Action qualifier in action block supported

2 Action name in action block supported

Table No. Feature No. Description of Feature
35006144 10/2019 575

IEC Compliance
45 1 None - no qualifier

2 Qualifier N
3 Qualifier R
4 Qualifier S
5 Qualifier L
6 Qualifier D
7 Qualifier P
9 Qualifier DS
11 Qualifier P1
12 Qualifier P0

45a 2 Action control without "final scan"
46 1 Single sequence

2a Divergence of sequence selection: left-to-right priority of transition
evaluations

3 Convergence of sequence selection
4 Simultaneous sequences - divergence and convergence
5a Sequence skip: left-to-right priority of transition evaluations
6a Sequence loop: left-to-right priority of transition evaluations

49 1 CONFIGURATION...END_CONFIGURATION construction (Note 12,
page 579)

5a Periodic TASK construction

5b Non-periodic TASK construction

6a WITH construction for PROGRAM to TASK association (Note 9, page 579)

6c PROGRAM declaration with no TASK association (Note 10, page 579)

50 5a Non-preemptive scheduling (Note 13, page 580)
5b Preemptive scheduling (Note 14, page 580)

Table No. Feature No. Description of Feature
576 35006144 10/2019

IEC Compliance
Note 1
List of type conversion functions:
 BOOL_TO_BYTE, BOOL_TO_DINT, BOOL_TO_INT, BOOL_TO_REAL, BOOL_TO_TIME,

BOOL_TO_UDINT, BOOL_TO_UINT, BOOL_TO_WORD, BOOL_TO_DWORD
 BYTE_TO_BOOL, BYTE_TO_DINT, BYTE_TO_INT, BYTE_TO_REAL, BYTE_TO_TIME,

BYTE_TO_UDINT, BYTE_TO_UINT, BYTE_TO_WORD, BYTE_TO_DWORD, BYTE_TO_BIT
 DINT_TO_BOOL, DINT_TO_BYTE, DINT_TO_INT, DINT_TO_REAL, DINT_TO_TIME,

DINT_TO_UDINT, DINT_TO_UINT, DINT_TO_WORD, DINT_TO_DWORD, DINT_TO_DBCD,
DINT_TO_STRING

 INT_TO_BOOL, INT_TO_BYTE, INT_TO_DINT, INT_TO_REAL, INT_TO_TIME,
INT_TO_UDINT, INT_TO_UINT, INT_TO_WORD, INT_TO_BCD, INT_TO_DBCD,
INT_TO_DWORD, INT_TO_STRING

 REAL_TO_BOOL, REAL_TO_BYTE, REAL_TO_DINT, REAL_TO_INT, REAL_TO_TIME,
REAL_TO_UDINT, REAL_TO_UINT, REAL_TO_WORD, REAL_TO_DWORD, REAL_TO_STRING

 TIME_TO_BOOL, TIME_TO_BYTE, TIME_TO_DINT, TIME_TO_INT, TIME_TO_REAL,
TIME_TO_UDINT, TIME_TO_UINT, TIME_TO_WORD, TIME_TO_DWORD, TIME_TO_STRING

 UDINT_TO_BOOL, UDINT_TO_BYTE, UDINT_TO_DINT, UDINT_TO_INT, UDINT_TO_REAL,
UDINT_TO_TIME, UDINT_TO_UINT, UDINT_TO_WORD, UDINT_TO_DWORD

 UINT_TO_BOOL, UINT_TO_BYTE, UINT_TO_DINT, UINT_TO_INT, UINT_TO_REAL,
UINT_TO_TIME, UINT_TO_UDINT, UINT_TO_WORD, UINT_TO_DWORD,

 WORD_TO_BOOL, WORD_TO_BYTE, WORD_TO_DINT, WORD_TO_INT, WORD_TO_REAL,
WORD_TO_TIME, WORD_TO_UDINT, WORD_TO_UINT, WORD_TO_BIT, WORD_TO_DWORD

 DWORD_TO_BOOL, DWORD_TO_BYTE, DWORD_TO_DINT, DWORD_TO_INT, DWORD_TO_REAL,
DWORD_TO_TIME, DWORD_TO_UDINT, DWORD_TO_UINT, DWORD_TO_BIT,

The effects of each conversion are described in the help text supplied with the Base Library.

Note 2
List of types for truncate function:
 REAL_TRUNC_DINT, REAL_TRUNC_INT, REAL_TRUNC_UDINT, REAL_TRUNC_UINT
The effects of each conversion are described in the help text supplied with the Base Library.

Note 3
List of types for BCD conversion function:
 BCD_TO_INT, DBCD_TO_INT, DBCD_TO_DINT

List of types for BCD conversion function:
 INT_TO_BCD, INT_TO_DBCD, DINT_TO_DBCD

The effects of each conversion are described in the help text supplied with the Base Library.
35006144 10/2019 577

IEC Compliance
Note 4
List of types for String functions:
 LEN_INT, LEFT_INT, RIGHT_INT, MID_INT, INSERT_INT, DELETE_INT, REPLACE_INT,

FIND_INT

Note 5
A variable can be mapped to a directly represented variable if they stricly have the same type.
This means that a variable of type INT can only be mapped on a directly represented variable of
type INT.

But there is one exception to this rule: for internal word (%MW<i>), Flat word (%IW<i>) and constant
word (%KW<i>) memory variables any declared variable type is allowed.

Allowed mappings:

Syntax Data type Allowed variable types
Internal bit %M<i> or %MX<i> EBOOL EBOOL

ARRAY [..] OF EBOOL
Internal word %MW<i> INT All types are allowed except:

 EBOOL
 ARRAY [..] OF EBOOL

Internal double word %MD<i> DINT No mapping, because of overlapping between
%MW<i> and %MD<i> and %MF<i>.

Internal real %MF<i> REAL No mapping, because of overlapping between
%MW<i> and %MD<i> and %MF<i>.

Constant word %KW<i> INT All types are allowed except:
 EBOOL
 ARRAY [..] OF EBOOL

Constant double word %KD<i> DINT No mapping, because of overlapping between
%KW<i> and %KD<i> and %KF<i>.
This kind of variables only exists on Premium
PLCs.

Constant real %KF<i> REAL No mapping, because of overlapping between
%KW<i> and %KD<i> and %KF<i>.
This kind of variables only exists on Premium
PLCs.

System bit %S<i> or %SX<i> EBOOL EBOOL
System word %SW<i> INT INT
System double word %SD<i> DINT DINT
Flat bit %I<i> EBOOL EBOOL

ARRAY [..] OF EBOOL
This kind of variables only exists on Qantum
PLCs.
578 35006144 10/2019

IEC Compliance
Note 6
Only operator "+" (for ADD), "-" (for SUB), "*" (for MUL) or "/" (for DIV) in ST language.

Note 7
This feature is only presented in the "expanded view" of the chart.

Note 8
This feature is presented in the "expanded view" of the chart, but not as concatenated blocks, but
as a scrollable list of action names with associated qualifiers inside one single block symbol.

Note 9
There is only a one-to-one mapping of program instance to task. The textual format is replaced by
a property dialog.

Note 10
The textual format is replaced by a property dialog.

Note 11
All variables are retentive (RETAIN qualifier implicitly assumed in variable declarations).

Note 12
The textual format is replaced by the project browser representation.

Flat word %IW<i> INT All types are allowed except:
 EBOOL
 ARRAY [..] OF EBOOL
This kind of variables only exists on Qantum
PLCs.

Common word %NWi.j.k INT INT
Topological variables %I..., %Q..., Same Type

(On some digital I/O modules it is allowed to
map arrays of EBOOL on %IX<topo> and
%QX<topo> objects.)

Extract bits %MWi.j, ... BOOL BOOL

Syntax Data type Allowed variable types
35006144 10/2019 579

IEC Compliance
Note 13
Using Mask-IT instruction, the user is able to get a non-preemptive behaviour. You will find
MASKEVT (Global EVT masking) and UNMASKEVT (Global EVT unmasking) in the System functions
of the libset.

Note 14
By default, the multi-task system is preemptive.
580 35006144 10/2019

IEC Compliance
IL language elements

IL language elements
IEC compliance table for IL language elements:

Table No. Feature No. Feature description
51b 1 Parenthesized expression beginning with explicit operator
51b 2 Parenthesized expression (short form)
52 1 LD operator (with modifier "N")

2 ST operator (with modifier "N")

3 S, R operator

4 AND operator (with modifiers "(", "N")

6 OR operator (with modifiers "(", "N")

7 XOR operator (with modifiers "(", "N")

7a NOT operator

8 ADD operator (with modifier "(")

9 SUB operator (with modifier "(")

10 MUL operator (with modifier "(")

11 DIV operator (with modifier "(")

11a MOD operator (with modifier "(")

12 GT operator (with modifier "(")

13 GE operator (with modifier "(")

14 EQ operator (with modifier "(")

15 NE operator (with modifier "(")

16 LE operator (with modifier "(")

17 LT operator (with modifier "(")

18 JMP operator (with modifiers "C", "N")

19 CAL operator (with modifiers "C", "N")

20 RET operator (with modifiers "C", "N") (Note, page 582)

21) (evaluate deferred operation)
35006144 10/2019 581

IEC Compliance
Note
In DFB only.

53 1a CAL of Function Block with non-formal argument list

1b CAL of Function Block with formal argument list

2 CAL of Function Block with load/store of arguments

4 Function invocation with formal argument list
5 Function invocation with non-formal argument list

Table No. Feature No. Feature description
582 35006144 10/2019

IEC Compliance
ST language elements

ST language elements
IEC compliance table for ST language elements:

Note
In DFB only.

Table No. Feature No. Feature description
55 1 Parenthesization (expression)

2 Function evaluation: functionName(listOfArguments)
3 Exponentiation: **
4 Negation: -
5 Complement: NOT
6 Multiply: *
7 Divide: /
8 Modulo: MOD
9 Add: +
10 Subtract: -
11 Comparison: <, >, <=, >=
12 Equality: =
13 Inequality: <>
14 Boolean AND: &
15 Boolean AND: AND
16 Boolean Exclusive OR: XOR
17 Boolean OR: OR

56 1 Assignment
2 Function block invocation and function block output usage
3 RETURN statement (Note, page 583)

4 IF statement

5 CASE statement

6 FOR statement

7 WHILE statement

8 REPEAT statement

9 EXIT statement

10 Empty statement
35006144 10/2019 583

IEC Compliance
Common graphical elements

Common graphical elements
IEC compliance table for common graphical elements:

Note
In DFB only.

Table No. Feature No. Feature description
57 2 Horizontal lines: Graphic or semigraphic

4 Vertical lines: Graphic or semigraphic
6 Horizontal/vertical connection: Graphic or semigraphic
8 Line crossings without connection: Graphic or semigraphic
10 Connected and non-connected corners: Graphic or semigraphic
12 Blocks with connecting lines: Graphic or semi-graphic

58 1 Unconditional Jump: FBD Language
2 Unconditional Jump: LD Language
3 Conditional Jump: FBD Language
4 Conditional Jump: LD Language
5 Conditional Return: LD Language (Note, page 584)
6 Conditional Return: FBD Language (Note, page 584)
7 Unconditional Return from function or function block (Note, page 584)
8 Unconditional Return: LD Language (Note, page 584)
584 35006144 10/2019

IEC Compliance
LD language elements

LD language elements
IEC compliance table for LD language elements:

Note
Only graphical representation.

Table No. Feature No. Feature description
59 1 Left power rail

2 Right power rail
60 1 Horizontal link

2 Vertical link
61 1 Normally open contact (vertical bar) (Note, page 585)

3 Normally closed contact (vertical bar) (Note, page 585)
5 Positive transition-sensing contact (vertical bar) (Note, page 585)
7 Negative transition-sensing contact (vertical bar) (Note, page 585)

62 1 Coil
2 Negated coil
3 SET (latch) coil
4 RESET (unlatch) coil
8 Positive transition-sensing coil
9 Negative transition-sensing coil
35006144 10/2019 585

IEC Compliance
Implementation-dependent parameters

Implementation-dependent parameters
IEC compliance table for implementation-dependent parameters:

Parameters Limitations/Behavior
Maximum length of identifiers 32 characters
Maximum comment length Within the Control Expert: 1024 characters for each editor

object.
Import: limited by XML constraints or UDBString usage in the
persistent layer.

Syntax and semantics of pragmas Unity Pro V1.0 only implements 1 pragma, used for legacy
convertor:
{ ConvError (' error text'); }
any other pragma construct is ignored (a warning message is
given)

NOTE: Unity Pro is the former name of Control Expert for
version 13.1 or earlier.

Syntax and semantics for the use of the
double-quote character when a particular
implementation supports Feature #4 but not
Feature #2 of Table 5.

(#2 of table 5 is supported)

Range of values and precision of
representation for variables of type TIME,
DATE, TIME_OF_DAY and DATE_AND_TIME

for TIME : t#0ms .. t#4294967295ms
(=t#49D_17H_2M_47S_295MS)
for DATE: D#1990-01-01 .. D#2099-12-31
for TOD: TOD#00:00:00 .. TOD#23:59:59

Precision of representation of seconds in
types TIME, TIME_OF_DAY and
DATE_AND_TIME

TIME: precision 1 ms
TIME_OF_DAY: precision 1 s

Maximum number of enumerated values Not applicable
Maximum number of array subscripts 6
Maximum array size 64 kbytes
Maximum number of structure elements no limit
Maximum structure size no limit
Maximum range of subscript values DINT range

Maximum number of levels of nested
structures

10

Default maximum length of STRING and
WSTRING variables

16 characters

Maximum allowed length of STRING and
WSTRING variables

64 kbytes
586 35006144 10/2019

IEC Compliance
Maximum number of hierarchical levels
Logical or physical mapping

Premium: physical mapping (5 levels)
Quantum: logical mapping (1 level)

Maximum number of inputs of extensible
functions

The number of all input parameters (including in-out
parameters) is limited to 32. The number of all output
parameters (including in-out parameters) is also limited to 32.
Thus the limit for extensible input parameters is (32 - number
of input parameters - number of in-out parameters).
The limit for extensible output parameters is (32 - number of
output parameters - number of in-out parameters).

Effects of type conversions on accuracy See online help.
Error conditions during type conversions Error conditions are described in the online-help. Globally

%S18 is set for overflow errors detected. ENO is also set. The
result is depending on the specific function.

Accuracy of numerical functions INTEL floating point processing or emulation.
Effects of type conversions between time
data types and other data types not defined in
Table 30

See online help.

Maximum number of function block
specifications and instantiations

Only limited by the maximum size of a section.

Function block input variable assignment
when EN is FALSE

No assignment

Pvmin, Pvmax of counters INT base counters:
 Pvmin=-32768 (0x8000)
 Pvmax=32767 (0x7FFF)

UINT base counters:
 Pvmin=0 (0x0)
 Pvmax=65535 (0xFFFF)

DINT base counters:
 Pvmin= -2147483648 (0x80000000)
 Pvmax=2147483647 (0x7FFFFFFF)

UDINT base counters:
 Pvmin=0 (0x0)
 Pvmax=4294967295 (0xFFFFFFFF)

Effect of a change in the value of a PT input
during a timing operation

The new PT values are immediately taken at once into
account, even during a running timing operation immediately
works with the new values.

Program size limitations Depends on controller type and memory
Precision of step elapsed time 10 ms
Maximum number of steps per SFC 1024 steps per SFC section

Parameters Limitations/Behavior
35006144 10/2019 587

IEC Compliance
Maximum number of transitions per SFC and
per step

Limited by the available area for entering steps/transitions and
by the maximum number of steps per SFC section (1024
Steps).
32 transition per step. Limited by the available area for
entering Alternative/Parallel branches, maximum is 32 rows.

Maximum number of action blocks per step 20
Access to the functional equivalent of the Q or
A outputs

not applicable

Transition clearing time Target dependent;
always < 100 micro-seconds

Maximum width of diverge/converge
constructs

32

Contents of RESOURCE libraries Not applicable

Effect of using READ_WRITE access to
function block outputs

Not applicable

Maximum number of tasks Depends on controller type.
Maximum on most powerful controller: 9 tasks

Task interval resolution 10 ms
Maximum length of expressions Practically no limit
Maximum length of statements Practically no limit
Maximum number of CASE selections Practically no limit

Value of control variable upon termination of
FOR loop

Undefined

Restrictions on network topology No restrictions
Evaluation order of feedback loops The block connected to the feedback variable is executed first

Parameters Limitations/Behavior
588 35006144 10/2019

IEC Compliance
Error Conditions

Error Conditions
IEC standards table for error conditions:

Error conditions Treatment (see Note, page 590)
Nested comments 2) error is reported during programming
Value of a variable exceeds the specified subrange 4) error is reported during execution
Missing configuration of an incomplete address
specification ("*" notation)

Not applicable

Attempt by a program organization unit to modify a
variable which has been declared CONSTANT

2) error is reported during programming

Improper use of directly represented or external
variables in functions

Not applicable

A VAR_IN_OUT variable is not "properly mapped" 2) error is reported during programming

Type conversion errors 4) error is reported during execution
Numerical result exceeds range for data type 4) error is reported during execution
Division by zero 4) error is reported during execution
Mixed input data types to a selection function 2) error is reported during programming
Result exceeds range for data type 4) error is reported during execution
No value specified for an in-out variable 2) error is reported during programming
Zero or more than one initial steps in SFC network 3) error is reported during analyzing/loading/linking
User program attempts to modify step state or time 2) error is reported during programming
Side effects in evaluation of transition condition 3) error is reported during analyzing/loading/linking
Action control contention error 3) error is reported during analyzing/loading/linking
Simultaneously true, non-prioritized transitions in a
selection divergence

Not applicable

Unsafe or unreachable SFC 3) error is reported during analyzing/loading/linking
Data type conflict in VAR_ACCESS Not applicable

A task fails to be scheduled or to meet its execution
deadline

4) error is reported during execution

Numerical result exceeds range for data type 4) error is reported during execution
Current result and operand not of same data type 2) error is reported during programming
Division by zero 4) error is reported during execution
Numerical result exceeds range for data type 4) error is reported during execution
Invalid data type for operation 4) error is reported during execution
Return from function without value assigned Not applicable
35006144 10/2019 589

IEC Compliance
Note
Identifications for the treatment of error conditions according to IEC 61131-3, subclause 1.5.1, d):
 1) error is not reported
 2) error is reported during programming
 3) error is reported during analyzing/loading/linking
 4) error is reported during execution

Iteration fails to terminate 4) error is reported during execution
Same identifier used as connector label and element
name

Not applicable

Uninitialized feedback variable 1) error is not reported

Error conditions Treatment (see Note, page 590)
590 35006144 10/2019

IEC Compliance
Extensions of IEC 61131-3

Section A.3
Extensions of IEC 61131-3

Extensions of IEC 61131-3, 2nd Edition

At a Glance
In addition to the standardized IEC features listed in the IEC Compliance Tables (see page 568),
the Control Expert programming environment inherited a number of features from the PL7
programming environment. These extensions are optionally provided; they can be checked or not
in a corresponding options dialog. The dialog and the features are described in detail in a chapter
of the online help titled Data and Languages (see EcoStruxure™ Control Expert, Operating
Modes).
Not included in the options dialog is another extension, which is inherited both from the PL7 and
the Concept programming environments: Control Expert provides the construct of the so-called
Section in all programming languages, which allows to subdivide a Program Organization Unit
(POU). This construct introduces the possibility to mix several languages (e.g. FBD sections, SFC
sections) in a POU body, a feature which, if used for this purpose, constitutes an extension of the
IEC syntax. A compliant POU body should contain a single section only. Sections or Program Units
do not create a distinct name scope; the name scope for all language elements is the POU.
35006144 10/2019 591

IEC Compliance
Purpose of Sections, or Program Units
Sections, or Program Units serve different purposes:
 Sections, or Program Units allow to subdivide large POU bodies according to functional

aspects: the user has the possibility to subdivide his POU body into functionally meaningful
parts. The list of sections represents a kind of functional table of contents of a large, otherwise
unstructured POU body.

 Sections, or Program Units allow to subdivide large POU bodies according to graphical aspects:
the user has the possibility to design substructures of a large POU body according to an
intended graphical presentation. He can create small or large graphical sections according to
his taste.

 The subdivision of large POU bodies allows quick online changes: in Control Expert, the
Section, or the Program Unit serves as the unit for online change. If a POU body is modified
during runtime at different locations, automatically all sections affected by the changes are
downloaded on explicit request.

 Sections, or Program Units allow to rearrange the execution order of specific, labeled parts of a
POU body: the section name serves as a label of that part of the body which is contained inside
the section, and by ordering these labels the execution order of those parts is manageable.

 Sections, or Program Units allow to use different languages in parallel in the same POU: this
feature is a major extension of the IEC syntax, which allows only one single IEC language to be
used for a POU body. In a compliant body, SFC has to be used to manage different languages
inside a body (each transition and action may be formulated in its own language).
592 35006144 10/2019

IEC Compliance
Textual language syntax

Section A.4
Textual language syntax

Textual Language Syntax

Description
The Control Expert programming environment does not yet provide support for an import or export
of text files complying with the full textual language syntax as specified in Annex B of IEC 61131-
3, 2nd Edition.
However, the textual syntax of the IL and ST languages, as specified in Annex B.2 and B.3 of IEC
61131-3, 2nd Edition, including all directly and indirectly referenced productions out of Annex B.1,
is supported in textual language sections.
Those syntax productions in Annex B of IEC 61131-3, 2nd Edition belonging to features which are
not supported by Control Expert according to the compliance tables (see page 568) are not
implemented.
35006144 10/2019 593

IEC Compliance

594 35006144 10/2019

EcoStruxure™ Control Expert
Glossary
35006144 10/2019
Glossary
!
%I

According to the IEC standard, %I indicates a discrete input-type language object.

%ID
According to the IEC standard, %ID indicates an input double word-type language object.

Only I/O objects make it possible to locate type instances (%MD<i>, %KD<i>, %QD, %ID, %MF<i>,
%KF<i>, %QF, %IF) by using their topological address (for example %MD0.6.0.11,
%MF0.6.0.31).

%IF
According to the IEC standard, %IF indicates an input real-type language object.

Only I/O objects make it possible to locate type instances (%MD<i>, %KD<i>, %QD, %ID, %MF<i>,
%KF<i>, %QF, %IF) by using their topological address (for example %MD0.6.0.11,
%MF0.6.0.31).

%IW
According to the IEC standard, %IW indicates an analog input -type language object.

%KD
According to the IEC standard, %KD indicates a constant double word-type language object.

For Premium/Atrium PLCs double-type instances of located data (%MD<i>, %KD<i>) or floating
(%MF<i>, %KF<i>) should be located by an integer type (%MW<i>, %KW<i>). Only I/O objects make
it possible to locate type instances (%MD<i>, %KD<i>, %QD, %ID, %MF<i>, %KF<i>, %QF, %IF) by
using their topological address (for example %MD0.6.0.11, %MF0.6.0.31).

For Modicon M340 PLCs, double-type instances of located data (%MD<i>, %KD<i>) or floating
(%MF<i>, %KF<i>) are not available.

%KF
According to the IEC standard, %KF indicates a constant real-type language object.

For Premium/Atrium PLCs double-type instances of located data (%MD<i>, %KD<i>) or floating
(%MF<i>, %KF<i>) should be located by an integer type (%MW<i>, %KW<i>). Only I/O objects make
it possible to locate type instances (%MD<i>, %KD<i>, %QD, %ID, %MF<i>, %KF<i>, %QF, %IF) by
using their topological address (for example %MD0.6.0.11, %MF0.6.0.31).

For Modicon M340 PLCs, double-type instances of located data (%MD<i>, %KD<i>) or floating
(%MF<i>, %KF<i>) are not available.
35006144 10/2019 595

Glossary
%KW
According to the IEC standard, %KW indicates a constant word-type language object.

For Premium/Atrium PLCs double-type instances of located data (%MD<i>, %KD<i>) or floating
(%MF<i>, %KF<i>) should be located by an integer type (%MW<i>, %KW<i>). Only I/O objects make
it possible to locate type instances (%MD<i>, %KD<i>, %QD, %ID, %MF<i>, %KF<i>, %QF, %IF) by
using their topological address (for example %MD0.6.0.11, %MF0.6.0.31).

For Modicon M340 PLCs, double-type instances of located data (%MD<i>, %KD<i>) or floating
(%MF<i>, %KF<i>) are not available.

%M
According to the IEC standard, %M indicates a memory bit-type language object.

%MD
According to the IEC standard, %MD indicates a memory double word-type language object.

For Premium/Atrium PLCs double-type instances of located data (%MD<i>, %KD<i>) or floating
(%MF<i>, %KF<i>) should be located by an integer type (%MW<i>, %KW<i>). Only I/O objects make
it possible to locate type instances (%MD<i>, %KD<i>, %QD, %ID, %MF<i>, %KF<i>, %QF, %IF) by
using their topological address (for example %MD0.6.0.11, %MF0.6.0.31).

For Modicon M340 PLCs, double-type instances of located data (%MD<i>, %KD<i>) or floating
(%MF<i>, %KF<i>) are not available.

%MF
According to the IEC standard, %MF indicates a memory real-type language object.

For Premium/Atrium PLCs double-type instances of located data (%MD<i>, %KD<i>) or floating
(%MF<i>, %KF<i>) should be located by an integer type (%MW<i>, %KW<i>). Only I/O objects make
it possible to locate type instances (%MD<i>, %KD<i>, %QD, %ID, %MF<i>, %KF<i>, %QF, %IF) by
using their topological address (for example %MD0.6.0.11, %MF0.6.0.31).

For Modicon M340 PLCs, double-type instances of located data (%MD<i>, %KD<i>) or floating
(%MF<i>, %KF<i>) are not available.

%MW
According to the IEC standard, %MW indicates a memory word-type language object.

For Premium/Atrium PLCs double-type instances of located data (%MD<i>, %KD<i>) or floating
(%MF<i>, %KF<i>) should be located by an integer type (%MW<i>, %KW<i>). Only I/O objects make
it possible to locate type instances (%MD<i>, %KD<i>, %QD, %ID, %MF<i>, %KF<i>, %QF, %IF) by
using their topological address (for example %MD0.6.0.11, %MF0.6.0.31).

For Modicon M340 PLCs, double-type instances of located data (%MD<i>, %KD<i>) or floating
(%MF<i>, %KF<i>) are not available.

%Q
According to the IEC standard, %Q indicates a discrete output-type language object.
596 35006144 10/2019

Glossary
%QD
According to the IEC standard, %QD indicates an output double word-type language object.

Only I/O objects make it possible to locate type instances (%MD<i>, %KD<i>, %QD, %ID, %MF<i>,
%KF<i>, %QF, %IF) by using their topological address (for example %MD0.6.0.11,
%MF0.6.0.31).

%QF
According to the IEC standard, %QF indicates an output real-type language object.

Only I/O objects make it possible to locate type instances (%MD<i>, %KD<i>, %QD, %ID, %MF<i>,
%KF<i>, %QF, %IF) by using their topological address (for example %MD0.6.0.11,
%MF0.6.0.31).

%QW
According to the IEC standard, %QW indicates an analog output-type language object.

A
animating the links

This is also called power flow, and refers to a type of animation used with Ladder language and
the function blocks. The links are displayed in red, green or black according to the variables
connected.
35006144 10/2019 597

Glossary
ANY
There is a hierarchy between the different types of data. In the DFB, it is sometimes possible to
declare which variables can contain several types of values. Here, we use ANY_xxx types.

The following diagram shows the hierarchically-ordered structure:

ARRAY
An ARRAY is a table of elements of the same type.

The syntax is as follows: ARRAY [<terminals>] OF <Type>
Example:
ARRAY [1..2] OF BOOL is a one-dimensional table made up of two BOOL-type elements.

ARRAY [1..10, 1..20] OF INT is a two-dimensional table made up of 10x20 INT-type
elements.
598 35006144 10/2019

Glossary
ASCII
ASCII is the abbreviation for American Standard Code for Information Interchange.
This is an American code (but which has become an international standard) that uses 7 bits to
define every alphanumerical character used in English, punctuation symbols, certain graphic
characters and other miscellaneous commands.

Auxiliary tasks
Optional periodic tasks used to process procedures that do not require fast processing:
measurement, adjustment, diagnostic aid, etc.

B
base 10 literals

A literal value in base 10 is used to represent a decimal integer value. This value can be preceded
by the signs "+" and "-". If the character "_" is employed in this literal value, it is not significant.
Example:
-12, 0, 123_456, +986

base 16 literals
An literal value in base 16 is used to represent an integer in hexadecimal. The base is determined
by the number "16" and the sign "#". The signs "+" and "-" are not allowed. For greater clarity when
reading, you can use the sign "_" between bits.
Example:
16#F_F or 16#FF (in decimal 255)

16#F_F or 16#FF (in decimal 224)

base 2 literals
A literal value in base 2 is used to represent a binary integer. The base is determined by the
number "2" and the sign "#". The signs "+" and "-" are not allowed. For greater clarity when reading,
you can use the sign "_" between bits.
Example:
2#1111_1111 or 2#11111111 (in decimal 255)

2#1110_0000 or 2#11100000 (in decimal 224)

base 8 literals
A literal value in base 8 is used to represent an octal integer. The base is determined by the number
"8" and the sign "#". The signs "+" and "-" are not allowed. For greater clarity when reading, you
can use the sign "_" between bits.
Example:
8#3_77 or 8#377 (in decimal 255)

8#34_0 or 8#340 (in decimal 224)
35006144 10/2019 599

Glossary
BCD
The Binary Coded Decimal (BCD) format is used to represent decimal numbers between 0 and 9
using a group of four bits (half-byte).
In this format, the four bits used to code the decimal numbers have a range of unused
combinations.
Example of BCD coding:
 the number 2450
 is coded: 0010 0100 0101 0000

BIT
This is a binary unit for a quantity of information which can represent two distinct values (or
statuses): 0 or 1.

BOOL
BOOL is the abbreviation for Boolean type. This is the elementary data item in computing. A BOOL
type variable has a value of either: 0 (FALSE) or 1 (TRUE).

A BOOL type word extract bit, for example: %MW10.4.

break point
Used in the "debug" mode of the application.
It is unique (one at a time) and, when reached, signals to the processor to stop the program run.
Used in connected mode, it can be positioned in one of the following program elements:
 LD network,
 Structured Text Sequence or Instruction List,
 Structured Text Line (Line mode).

BYTE
When 8 bits are put together, this is callad a BYTE. A BYTE is either entered in binary, or in base 8.

The BYTE type is coded in an 8 bit format, which, in hexadecimal, ranges from 16#00 to 16#FF

C
constants

An INT, DINT or REAL type variable located in the constant field (%K), or variables used in direct
addressing (%KW, %KD or %KF). The contents of these cannot be modified by the program during
execution.
600 35006144 10/2019

Glossary
CPU
Is the abbreviation for Control Processing Unit.
This is the microprocessor. It is made up of the control unit combined with the arithmetic unit. The
aim of the control unit is to extract the instruction to be executed and the data needed to execute
this instruction from the central memory, to establish electrical connections in the arithmetic unit
and logic, and to run the processing of this data in this unit. We can sometimes find ROM or RAM
memories included in the same chip, or even I/O interfaces or buffers.

cyclic execution
The master task is executed either cyclically or periodically. Cyclical execution consists of stringing
cycles together one after the other with no waiting time between the cycles.

D
DATE

The DATE type coded in BCD in 32 bit format contains the following information:
 the year coded in a 16-bit field,
 the month coded in an 8-bit field,
 the day coded in an 8-bit field.
The DATE type is entered as follows: D#<Year>-<Month>-<Day>

This table shows the lower/upper limits in each field:

DBCD
Representation of a Double BCD-format double integer.
The Binary Coded Decimal (BCD) format is used to represent decimal numbers between 0 and 9
using a group of four bits.
In this format, the four bits used to code the decimal numbers have a range of unused
combinations.
Example of DBCD coding:
 the number 78993016
 is coded: 0111 1000 1001 1001 0011 0000 0001 0110

Field Limits Comment
Year [1990,2099] Year
Month [01,12] The left 0 is always displayed, but can be omitted at the time of entry
Day [01,31] For the months 01\03\05\07\08\10\12

[01,30] For the months 04\06\09\11
[01,29] For the month 02 (leap years)
[01,28] For the month 02 (non leap years)
35006144 10/2019 601

Glossary
DDT
DDT is the abbreviation for Derived Data Type.
A derived data type is a set of elements of the same type (ARRAY) or of various types (structure)

device DDT
Device DDT is the abbreviation for Device Derived Data Type.
A device derived data type is a predefined DDT that describes the I/O language elements of an I/O
Module. This data type is represented in a structure, which depends on the capabilities of the I/O
module.

DFB
DFB is the abbreviation for Derived Function Block.
DFB types are function blocks that can be programmed by the user ST, IL, LD or FBD.
By using DFB types in an application, it is possible to:
 simplify the design and input of the program,
 increase the legibility of the program,
 facilitate the debugging of the program,
 reduce the volume of the generated code.

DFB instance
A DFB type instance occurs when an instance is called from a language editor.
The instance possesses a name, input/output interfaces, the public and private variables are
duplicated (one duplication per instance, the code is not duplicated).
A DFB type can have several instances.

DINT
DINT is the abbreviation for Double Integer format (coded on 32 bits).

The lower and upper limits are as follows: -(2 to the power of 31) to (2 to the power of 31) - 1.
Example:
-2147483648, 2147483647, 16#FFFFFFFF.

documentation
Contains all the information of the project. The documentation is printed once compiled and used
for maintenance purposes.
The information contained in the documentation cover:
 the hardware and software configuration,
 the program,
 the DFB types,
 the variables and animation tables,
 the cross-references.
 ...
When building the documentation file, you can include all or some of these items.
602 35006144 10/2019

Glossary
driver
A program indicating to your computer's operating system the presence and characteristics of a
peripheral device. We also use the term peripheral device driver. The best-known drivers are
printer drivers. To make a PLC communicate with a PC, communication drivers need to be installed
(Uni-Telway, XIP, Fipway, etc.).

DT
DT is the abbreviation for Date and Time.

The DT type coded in BCD in 64 bit format contains the following information:
 The year coded in a 16-bit field,
 the month coded in an 8-bit field,
 the day coded in an 8-bit field,
 the hour coded in a 8-bit field,
 the minutes coded in an 8-bit field,
 the seconds coded in an 8-bit field.
NOTE: The 8 least significant bits are unused.
The DT type is entered as follows:

DT#<Year>-<Month>-<Day>-<Hour>:<Minutes>:<Seconds>
This table shows the lower/upper limits in each field:

Field Limits Comment
Year [1990,2099] Year
Month [01,12] The left 0 is always displayed, but can be omitted at the time of entry
Day [01,31] For the months 01\03\05\07\08\10\12

[01,30] For the months 04\06\09\11
[01,29] For the month 02 (leap years)
[01,28] For the month 02 (non leap years)

Hour [00,23] The left 0 is always displayed, but can be omitted at the time of entry
Minute [00,59] The left 0 is always displayed, but can be omitted at the time of entry
Second [00,59] The left 0 is always displayed, but can be omitted at the time of entry
35006144 10/2019 603

Glossary
DWORD
DWORD is the abbreviation for Double Word.

The DWORD type is coded in 32 bit format.

This table shows the lower/upper limits of the bases which can be used:

Representation examples:

E
EBOOL

EBOOL is the abbreviation for Extended Boolean type. A EBOOL type variable brings a value (0
(FALSE) or 1 (TRUE) but also rising or falling edges and forcing capabilities.

An EBOOL type variable takes up one byte of memory.

The byte split up into:
 one bit for the value,
 one bit for the history bit (each time the state’s object changes, the value is copied inside the

history bit),
 one bit for the forcing bit (equals to 0 if the object isn’t forced, equal to 1 if the bit is forced.
The default type value of each bit is 0 (FALSE).

Base Lower limit Upper limit
Hexadecimal 16#0 16#FFFFFFFF
Octal 8#0 8#37777777777
Binary 2#0 2#11111111111111111111111111111111

Data Content Representation in One of the Bases
00000000000010101101110011011110 16#ADCDE
00000000000000010000000000000000 8#200000
00000000000010101011110011011110 2#10101011110011011110
604 35006144 10/2019

Glossary
EDT
EDT is the abbreviation for Elementary Data Type.
These types are as follows:
 BOOL,
 EBOOL,
 WORD,
 DWORD,
 INT,
 DINT,
 UINT,
 UDINT,
 REAL,
 DATE,
 TOD,
 DT.

EF
Is the abbreviation for Elementary Function.
This is a block which is used in a program, and which performs a predefined software function.
A function has no internal status information. Multiple invocations of the same function using the
same input parameters always supply the same output values. Details of the graphic form of the
function invocation can be found in the "[Functional block (instance)]". In contrast to the invocation
of the function blocks, function invocations only have a single unnamed output, whose name is the
same as the function. In FBD each invocation is denoted by a unique [number] via the graphic
block, this number is automatically generated and can not be altered.
You position and set up these functions in your program in order to carry out your application.
You can also develop other functions using the SDKC development kit.

EFB
Is the abbreviation for Elementary Function Block.
This is a block which is used in a program, and which performs a predefined software function.
EFBs have internal statuses and parameters. Even where the inputs are identical, the output
values may be different. For example, a counter has an output which indicates that the preselection
value has been reached. This output is set to 1 when the current value is equal to the preselection
value.
35006144 10/2019 605

Glossary
EN / ENO (enable / error notification)
EN means ENable, this is an optional block input.

If EN = 0, the block is not activated, its internal program is not executed and ENO it is set to 0.

If EN = 1, the internal program of the block is executed, and ENO is set to 1 by the system. If an
error occurs, ENO is set to 0.

ENO means Error NOtification, this is the output associated to the optional input EN.

If ENO is set to 0 (caused by EN = 0 or in case of an execution error),
 the outputs of function blocks remain in the status they were in for the last correct executed

scanning cycle and
 the output(s) of functions and procedures are set to "0".
NOTE: If EN is not connected, it is automatically set to 1.

event processing
Event processing 1 is a program section launched by an event. The instructions programmed in
this section are executed when a software application event (Timer) or a hardware event
(application specific module) is received by the processor.
Event processes take priority over other tasks, and are executed the moment the event is detected.
The event process EVT0 is of highest priority. All others have the same level of priority.
NOTE: For M340, IO events with the same priority level are stored in a FIFO and are treated in the
order in which they are received.
All the timers have the same priority. When several timers end at the same time, the lowest timer
number is processed first.
The system word %SW48 counts IO events and telegram processed.
NOTE: TELEGRAM is available only for PREMIUM (not on Quantum or M340)

F
FAST task

Task launched periodically (setting of the period in the PC configuration) used to carry out a part
of the application having a superior level of priority to the Mast task (master).

FBD
FBD is the abbreviation for Function Block Diagram.
FBD is a graphic programming language that operates as a logic diagram. In addition to the simple
logic blocks (AND, OR, etc.), each function or function block of the program is represented using this
graphic form. For each block, the inputs are located to the left and the outputs to the right. The
outputs of the blocks can be linked to the inputs of other blocks to form complex expressions.

FFB
Collective term for EF (Elementary Function), EFB (Elementary Function Block) and DFB (Derived
Function block)
606 35006144 10/2019

Glossary
flash eprom
PCMCIA memory card containing the program and constants of the application.

FNES
FNES is the abbreviation for Fichiers Neutres d’Entrées Sorties (Neutral I/O Documentation).
FNES format describes using a tree structure the PLCs in terms of rack, cards and channels.
It is based on the CNOMO standard (comité de normalisation des outillages de machines outils).

FTP
FTP is the abbreviation for File Transfer Protocol. FTP is the web’s file transfer protocol.

function view
View making it possible to see the program part of the application through the functional modules
created by the user (see Functional module definition).

functional module
A functional module is a group of program elements (sections, sub-programs, macro steps,
animation tables, runtime screen, etc.) whose purpose is to perform an automation device function.
A functional module may itself be separated into lower-level functional modules, which perform one
or more sub-functions of the main function of the automation device.

G
gray

Gray or "reflected binary" code is used to code a numerical value being developed into a chain of
binary configurations that can be differentiated by the change in status of one and only one bit.
This code can be used, for example, to avoid the following random event: in pure binary, the
change of the value 0111 to 1000 can produce random numbers between 0 and 1000, as the bits
do not change value altogether simultaneously.
Equivalence between decimal, BCD and Gray:

H
HTTP

HTTP is the abbreviation for HyperText Transfer Protocol. HTTP is the protocol for the formatting
and transmission of files on the web. HTTP runs on top of TCP/IP (internet) protocols.
35006144 10/2019 607

Glossary
hyperlink
The hyperlink function enables links to be created between your project and external documents.
You can create hyperlinks in all the elements of the project directory, in the variables, in the
processing screen objects, etc.
The external documents can be web pages, files (xls, pdf, wav, mp3, jpg, gif, etc.).

I
I/O object

An I/O object is an implicit or explicit language object for an expert function module or a I/O device
on a fieldbus. They are of the following types: %Ch, %I, %IW, %ID, %IF, %Q, %QW, % QD, QF,
%KW, %KD, %KF, %MW, %MD, and %MF.
The objects' topological address depends on the module's position on the rack or the device's
position on the bus.
For Premium/Atrium PLCs double-type instances of located data (%MD<i>, %KD<i>) or floating
(%MF<i>, %KF<i>) should be located by an integer type (%MW<i>, %KW<i>). Only I/O objects make
it possible to locate type instances (%MD<i>, %KD<i>, %QD, %ID, %MF<i>, %KF<i>, %QF, %IF) by
using their topological address (for example %MD0.6.0.11, %MF0.6.0.31).

For Modicon M340 PLCs, double-type instances of located data (%MD<i>, %KD<i>) or floating
(%MF<i>, %KF<i>) are not available.

IEC 61131-3
International standard: Programmable Logic Controls
Part 3: Programming languages.

IL
IL is the abbreviation for Instruction List.
This language is a series of basic instructions.
This language is very close to the assembly language used to program processors.
Each instruction is composed of an instruction code and an operand.
608 35006144 10/2019

Glossary
INF
Used to indicate that a number overruns the allowed limits.
For a number of integers, the value ranges (shown in gray) are as follows:

When a calculation result is:
 less than -3.402824e+38, the symbol -INF (for -infinite) is displayed,
 greater than +3.402824e+38, the symbol +INF (for +infinite) is displayed.

instantiate
To instantiate an object is to allocate a memory space whose size depends on the type of object
to be instantiated. When an object is instantiated, it exists and can be manipulated by the program.

INT
INT is the abbreviation for single integer format (coded on 16 bits).

The lower and upper limits are as follows: -(2 to the power of 31) to (2 to the power of 31) - 1.
Example:
-32768, 32767, 2#1111110001001001, 16#9FA4.

integer literals
Integer literal are used to enter integer values in the decimal system. The values can have a
preceding sign (+/-). Individual underlines (_) between numbers are not significant.
Example:
-12, 0, 123_456, +986

IODDT
IODDT is the abbreviation for Input/Output Derived Data Type.
The term IODDT designates a structured data type representing a module or a channel of a PLC
module. Each application expert module possesses its own IODDTs.

K
keyword

A keyword is a unique combination of characters used as a syntactical programming language
element (See annex B definition of the IEC standard 61131-3. All the key words used in
Control Expert and of this standard are listed in annex C of the IEC standard 61131-3. These
keywords cannot be used as identifiers in your program (names of variables, sections, DFB types,
etc.)).
35006144 10/2019 609

Glossary
L
LD

LD is the abbreviation for Ladder Diagram.
LD is a programming language, representing the instructions to be carried out in the form of graphic
diagrams very close to a schematic electrical diagram (contacts, coils, etc.).

located variable
A located variable is a variable for which it is possible to know its position in the PLC memory. For
example, the variable Water_pressure, is associated with%MW102. Water_pressure is said to
be localized.

M
macro step

A macro step is the symbolic representation of a unique set of steps and transitions, beginning with
an input step and ending with an output step.
A macro step can call another macro step.

MAST task
Main program task.
It is obligatory and is used to carry out sequential processing of the PLC.

mono task
An application comprising a single task, and so necessarily the Master task.

multi task
Application comprising several tasks (Mast, Fast, Auxiliary, event processing).
The order of priority for the execution of tasks is defined by the operating system of the PLC.

multiple token
Operating mode of an SFC. In multitoken mode, the SFC may possess several active steps at the
same time.
610 35006144 10/2019

Glossary
N
naming convention (identifier)

An identifier is a sequence of letters, numbers and underlines beginning with a letter or underline
(e.g., name of a function block type, an instance, a variable or a section). If you select the Extended
option in the Tools → Project Settings... → Variables dialog, letters from national character sets
(e.g., ö, ü, é, õ) can be used. Underlines are significant in identifiers; e.g., A_BCD and AB_CD are
interpreted as different identifiers. Ending underlines is invalid.
Identifiers cannot contain spaces. Not case sensitive; e.g., ABCD and abcd are interpreted as the
same identifier.
According to IEC 61131-3 leading digits are not allowed in identifiers. Nevertheless, you can use
them if you activate the check box Allow leading digits in the Tools → Project Settings... →
Variables dialog.
According to IEC 61131-3 multiple leading underlines and consecutives underlines are not allowed
in identifiers. Nevertheless, you can use them if you select the Extended option in the Tools →
Project Settings... → Variables → Character set dialog.
Identifiers cannot be keywords.

NAN
Used to indicate that a result of an operation is not a number (NAN = Not A Number).
Example: calculating the square root of a negative number.
NOTE: The IEC 559 standard defines two classes of NAN: quiet NAN (QNAN) and signaling NaN
(SNaN) QNAN is a NAN with the most significant fraction bit set and a SNAN is a NAN with the most
significant fraction bit clear (Bit number 22). QNANs are allowed to propagate through most
arithmetic operations without signaling an exception. SNAN generally signal an invalid-operation
exception whenever they appear as operands in arithmetic operations (See %SW17 and %S18).

network
Mainly used in communication, a network is a group of stations which communicate among one
another. The term network is also used to define a group of interconnected graphic elements. This
group forms then a part of a program which may be composed of a group of networks.

O
operator screen

This is an editor that is integrated into Control Expert, which is used to facilitate the operation of an
automated process. The user regulates and monitors the operation of the installation, and, in the
event of any problems, can act quickly and simply.
35006144 10/2019 611

Glossary
P
periodic execution

The master task is executed either cyclically or periodically. In periodic mode, you determine a
specific time (period) in which the master task must be executed. If it is executed under this time,
a waiting time is generated before the next cycle. If it is executed over this time, a control system
indicates the overrun. If the overrun is too high, the PLC is stopped.

procedure
Procedures are functions view technically. The only difference to elementary functions is that
procedures can take up more than one output and they support data type VAR_IN_OUT. To the
eye, procedures are no different than elementary functions.
Procedures are a supplement to IEC 61131-3.

Program Unit
A Program Unit is a part of program with it’s own set of local and public variables. Program Units
allow easy duplication and clear organization of program with local and public variables. Program
Units are compliant with Program Organization Units (POUs) program as defined in IEC1131-3
standard.

protection
Option preventing the contents of a program element to be read (read protected), or to write or
modify the contents of a program element (read/write protected).
The protection is confirmed by a password.
612 35006144 10/2019

Glossary
R
REAL

Real type is a coded type in 32 bits.
The ranges of possible values are illustrated in gray in the following diagram:

When a calculation result is:
 between -1.175494e-38 and 1.175494e-38 it is considered as a DEN,
 less than -3.4028234e+38, the symbol -INF (for - infinite) is displayed,
 greater than +3.4028234e+38, the symbol INF (for +infinite) is displayed,
 undefined (square root of a negative number), the symbol NAN or NAN is displayed.

NOTE: The IEC 559 standard defines two classes of NAN: quiet NAN (QNAN) and signaling NaN
(SNaN) QNAN is a NAN with the most significant fraction bit set and a SNAN is a NAN with the most
significant fraction bit clear (Bit number 22). QNANs are allowed to propagate through most
arithmetic operations without signaling an exception. SNAN generally signal an invalid-operation
exception whenever they appear as operands in arithmetic operations (See %SW17 and %S18).
NOTE: when an operand is a DEN (De-normalized number) the result is not significant.

real literals
An literal real value is a number expressed in one or more decimals.
Example:
-12.0, 0.0, +0.456, 3.14159_26

real literals with exponent
An Literal decimal value can be expressed using standard scientific notation. The representation
is as follows: mantissa + exponential.
Example:
-1.34E-12 or -1.34e-12
1.0E+6 or 1.0e+6
1.234E6 or 1.234e6

reference data type
A reference data type is a data type that allows to create a variable which contains the address of
another variable.
This specific data type is described in the Language Reference manual (see page 251).
35006144 10/2019 613

Glossary
RS 232C
Serial communication standard which defines the voltage of the following service:
 a signal of +12 V indicates a logical 0,
 a signal of -12 V indicates a logical 1.
There is, however, in the case of any attenuation of the signal, detection provided up to the limits
-3 V and +3 V.
Between these two limits, the signal will be considered as invalid.
RS 232 connections are quite sensitive to interference. The standard specifies not to exceed a
distance of 15 m or a maximum of 9600 bauds (bits/s).

RS 485
Serial connection standard that operates in 10 V/+5 V differential. It uses two wires for
send/receive. Their "3 states" outputs enable them to switch to listen mode when the transmission
is terminated.

run
Function enabling the startup of the application program of the PLC.

run auto
Function enabling the execution of the PLC application program to be started automatically in the
case of a cold start.

rung
A rung is the equivalent of a sequence in LD; other related terms are "Ladder network" or, more
generally, "Network". A rung is inscribed between two potential bars of an LD editor and is
composed of a group of graphic elements interconnected by means of horizontal or vertical
connections. The dimensions of a rung are 17 to 256 lines and 11 to 64 columns maximum.

S
section

Program module belonging to a task which can be written in the language chosen by the
programmer (FBD, LD, ST, IL, or SFC).
A task can be composed of several sections, the order of execution of the sections corresponding
to the order in which they are created, and being modifiable.

SFC
SFC is the abbreviation for Sequential Function Chart.
SFC enables the operation of a sequential automation device to be represented graphically and in
a structured manner. This graphic description of the sequential behavior of an automation device,
and the various situations which result from it, is performed using simple graphic symbols.

SFC objects
An SFC object is a data structure representing the status properties of an action or transition of a
sequential chart.
614 35006144 10/2019

Glossary
single token
Operating mode of an SFC chart for which only a single step can be active at any one time.

ST
ST is the abbreviation for Structured Text language.
Structured Text language is an elaborated language close to computer programming languages.
It enables you to structure series of instructions.

STRING
A variable of the type STRING is an ASCII standard character string. A character string has a
maximum length of 65534 characters.

structure
View in the project navigator with represents the project structure.

subroutine
Program module belonging to a task (MAST, FAST, AUX) which can be written in the language
chosen by the programmer (FBD, LD, ST, or IL).
A subroutine may only be called by a section or by another subroutine belonging to the task in
which it is declared.

T
task

A group of sections and subroutines, executed cyclically or periodically for the MAST task, or
periodically for the FAST task.
A task possesses a level of priority and is linked to inputs and outputs of the PLC. These I/O are
refreshed in consequence.

TIME
The type TIME expresses a duration in milliseconds. Coded in 32 bits, this type makes it possible
to obtain periods from 0 to (2 to the power of 32)-1 milliseconds.

time literals
The units of type TIME are the following: the days (d), the hours (h), the minutes (m), the seconds
(s) and the milliseconds (ms). A literal value of the type TIME is represented by a combination of
previous types preceded by T#, t#, TIME# or time#.

Examples: T#25h15m, t#14.7S, TIME#5d10h23m45s3ms
time out

In communication projects, the time out is a delay after which the communication is stopped if there
is no answer of the target device.
35006144 10/2019 615

Glossary
TOD
TOD is the abbreviation for Time of Day.

The TOD type coded in BCD in 32 bit format contains the following information:
 the hour coded in a 8-bit field,
 the minutes coded in an 8-bit field,
 the seconds coded in an 8-bit field.
NOTE: The 8 least significant bits are unused.
The Time of Day type is entered as follows: TOD#<Hour>:<Minutes>:<Seconds>
This table shows the lower/upper limits in each field:

Example: TOD#23:59:45.

token
An active step of an SFC is known as a token.

U
UDINT

UDINT is the abbreviation for Unsigned Double Integer format (coded on 32 bits) unsigned. The
lower and upper limits are as follows: 0 to (2 to the power of 32) - 1.
Example:
0, 4294967295, 2#11111111111111111111111111111111, 8#37777777777,
16#FFFFFFFF.

UINT
UINT is the abbreviation for Unsigned integer format (coded on 16 bits). The lower and upper limits
are as follows: 0 to (2 to the power of 16) - 1.
Example:
0, 65535, 2#1111111111111111, 8#177777, 16#FFFF.

unlocated variable
An unlocated variable is a variable for which it is impossible to know its position in the PLC memory.
A variable which have no address assigned is said to be unlocated.

Field Limits Comment
Hour [00,23] The left 0 is always displayed, but can be omitted at the time of entry
Minute [00,59] The left 0 is always displayed, but can be omitted at the time of entry
Second [00,59] The left 0 is always displayed, but can be omitted at the time of entry
616 35006144 10/2019

Glossary
V
variable

Memory entity of the type BOOL, WORD, DWORD, etc., whose contents can be modified by the
program during execution.

visualization window
This window, also called a watch window, displays the variables that cannot be animated in the
language editors. Only those variables that are visible at a given time in the editor are displayed.

W
watch point

Used in the "debug" mode of the application.
It enables the display of animated variables to be synchronized with the execution of a program
element (containing the watch point) in order to ascertain their values at this precise point of the
program.

WORD
The WORD type is coded in 16 bit format and is used to carry out processing on bit strings.

This table shows the lower/upper limits of the bases which can be used:

Representation examples

Base Lower Limit Upper Limit
Hexadecimal 16#0 16#FFFF
Octal 8#0 8#177777
Binary 2#0 2#1111111111111111

Data Content Representation in One of the Bases
0000000011010011 16#D3
1010101010101010 8#125252
0000000011010011 2#11010011
35006144 10/2019 617

Glossary

618 35006144 10/2019

EcoStruxure™ Control Expert
Index
35006144 10/2019
Index
A
ADD

IL, 427
addressing

data instances, 263
input/output, 263

alignment
DDT, 225

AND
IL, 425
ST, 472

ANY_ARRAY, 243
ANY_BOOL, 191
ARRAY, 219
automatic start in RUN, 151

B
BOOL, 191
BYTE, 216

C
CAL, 430
CASE...OF...END_CASE

ST, 480
channel data structure, 229, 231
cold start, 151, 163
comparison

IL, 423
LD, 331
ST, 468

compatibility
data types, 247

D
D

SFC, 374
data instances, 255
35006144 10/2019
data type
Reference, 251

data types, 187
DATE, 203
DDT, 218

alignment, 225
derived data types (DDT), 218, 222
derived function block (DFB), 513

representation, 236, 518
device DDT

Instance name, 232
Device DDT Instance

name, 232
Device derived data types (DDDT), 218
DFB

representation, 518
diagnostics DFB, 555
DINT, 197
DIV

IL, 427
DS

SFC, 374
DT, 205
DWORD, 216

E
EBOOL, 191
EDT, 187
EFB, 235
elementary data types (EDT), 187
elementary function block (EFB), 235, 236
ELSE, 478
ELSIF...THEN, 479
EN/ENO

FBD, 294
IL, 441, 451, 458
LD, 327
ST, 497, 504, 510

EQ
IL, 429
619

Index
event
timer, 125

event processing, 114
EXIT, 485

F
FBD

language, 285, 288
structure, 286

floating point, 206
FOR...TO...BY...DO...END_FOR

ST, 481
forced bits, 191
functions available for the different types of
PLC, 87

G
GDT, 243
GE

IL, 428
GT

IL, 428

H
HALT, 176

I
IEC Compliance, 565
IF...THEN...END_IF

ST, 477
implicit type conversion, 557
Implicit Type Conversion, 558
IN_OUT

FBD, 296
IL, 451, 459
LD, 329
ST, 505, 511

input/output
addressing, 263
620
instruction list (IL)
language, 413, 437, 442, 454
operators, 423
structure, 415

INT, 197

J
JMP

FBD, 299
IL, 431, 433
LD, 330
SFC, 381
ST, 489

L
L

SFC, 374
labels

FBD, 299
IL, 433
LD, 330
ST, 489

LD
language, 313, 320
structure, 314

LD operators
IL, 313

LE
IL, 429

LT, 430

M
memory structures, 133

Modicon M340, 138
MOD

IL, 428
ST, 469

Modicon M340
memory structures, 138
State RAM, 138

MUL
IL, 427
35006144 10/2019

Index
N
name

device DDT Instance, 232
Device DDT Instance, 232

NE
IL, 429

NOT
IL, 426

O
operate, 331
OR

IL, 425
ST, 472

P
P

SFC, 374
P0

SFC, 374
P1

SFC, 374
private variables

DFB, 528
FBD, 293, 326, 444, 500

Program Unit, 98, 98
public variables

DFB, 528
FBD, 293
IL, 444
LD, 325
ST, 499

R
R

IL, 425
LD, 318
SFC, 374

REAL, 206
Reference Data Type, 251
reference declaration, 251
35006144 10/2019
REPEAT...UNTIL...END_REPEAT, 484
RETURN

FBD, 299
IL, 431
LD, 330
ST, 487

S
S

IL, 424
LD, 318
SFC, 374

sections, 100, 101
SFC

language, 355, 371
structure, 357

SFCCHART_STATE, 359
SFCSTEP_STATE, 365
SFCSTEP_TIMES, 365
State RAM

Modicon M340, 138
state RAM of Modicon M340

RUN mode, 164
STOP mode, 164

STRING, 211
structure, 218
structured text (ST)

instructions, 473
language, 461, 492, 498, 507
operators, 468
structure, 463

SUB
IL, 427

subroutines, 100, 105

T
tasks, 91, 95

cyclic, 109
periodic, 110

TIME, 199
timer

event, 125
TOD, 204
621

Index
U
UDINT, 197
UINT, 197

W
warm start, 151
watchdogs

mono-task, 111
multi-task, 119

WHILE...DO...END_WHILE
ST, 483

WORD, 216

X
XOR

IL, 426
ST, 472
622
 35006144 10/2019

	EcoStruxure™ Control Expert
	Table of Contents
	Safety Information
	About the Book
	General Presentation of Control Expert
	Presentation
	Capabilities of Control Expert
	User Interface
	Project Browser
	User Application and Project File Formats
	Configurator
	Data Editor
	Program Unit Data Editor
	Program Editor
	Function Block Diagram FBD
	Ladder Diagram (LD) Language
	General Information about SFC Sequence Language
	Instruction List IL
	Structured Text ST
	PLC Simulator
	Export/Import
	User Documentation
	Debug Services
	Diagnostic Viewer
	Operator Screen

	Application Structure
	Description of the Available Functions for Each Type of PLC
	Functions Available for the Different Types of PLC

	Application Program Structure
	Description of Tasks and Processes
	Presentation of the Master Task
	Presentation of the Fast Task
	Presentation of Auxiliary Tasks
	Overview of Event Processing

	Description of Program Units
	Description of Program Units

	Description of Sections and Subroutines
	Description of Sections
	Description of SFC sections
	Description of Subroutines

	Mono Task Execution
	Description of the Master Task Cycle
	Mono Task: Cyclic Execution
	Periodic Execution
	Control of Cycle Time
	Execution of Quantum Sections with Remote Inputs/Outputs

	Multitasking Execution
	Multitasking Software Structure
	Sequencing of Tasks in a Multitasking Structure
	Task Control
	Assignment of Input/Output Channels to Master, Fast and Auxiliary Tasks
	Management of Event Processing
	Execution of TIMER-type Event Processing
	Input/Output Exchanges in Event Processing
	How to Program Event Processing

	Application Memory Structure
	Input Output Data Addressing Methods
	Input Output Data Addressing Methods

	Memory Structure of the Premium, Atrium and Modicon M340 PLCs
	Memory Structure of Modicon M340 PLCs
	Memory Structure of Premium and Atrium PLCs
	Detailed Description of the Memory Zones

	Memory Structure of Quantum PLCs
	Memory Structure of Quantum PLCs
	Detailed Description of the Memory Zones

	Operating Modes
	Modicon M340 PLCs Operating Modes
	Processing of Power Outage and Restoral of Modicon M340 PLCs
	Processing on Cold Start for Modicon M340 PLCs
	Processing on Warm Restart for Modicon M340 PLCs
	Automatic Start in RUN for Modicon M340 PLCs
	Processing of State RAM on STOP Mode for Modicon M340 PLCs

	Premium, Quantum PLCs Operating Modes
	Processing of Power Outage and Restoral for Premium/Quantum PLCs
	Processing on Cold Start for Premium/Quantum PLCs
	Processing on Warm Restart for Premium/Quantum PLCs
	Automatic Start in RUN for Premium/Quantum

	PLC HALT Mode
	PLC HALT Mode

	Data Description
	General Overview of Data
	General
	General Overview of the Data Type Families
	Overview of Data Instances
	Overview of the Data References

	Data Types
	Elementary Data Types (EDT) in Binary Format
	Overview of Data Types in Binary Format
	Boolean Types
	Integer Types
	The Time Type

	Elementary Data Types (EDT) in BCD Format
	Overview of Data Types in BCD Format
	The Date Type
	The Time of Day (TOD) Type
	The Date and Time (DT) Type

	Elementary Data Types (EDT) in Real Format
	Presentation of the Real Data Type

	Elementary Data Types (EDT) in Character String Format
	Overview of Data Types in Character String Format

	Elementary Data Types (EDT) in Bit String Format
	Overview of Data Types in Bit String Format
	Bit String Types

	Derived Data Types (DDT/IODDT/Device DDT)
	Arrays
	Structures
	Overview of the Derived Data Type family (DDT)
	DDT: Mapping Rules
	Overview of Input/Output Derived Data Types (IODDT)
	Overview of Device Derived Data Types (Device DDT)
	Device DDT Instance Naming Rule

	Function Block Data Types (DFB\EFB)
	Overview of Function Block Data Type Families
	Characteristics of Function Block Data Types (EFB\DFB)
	Characteristics of Elements Belonging to Function Blocks

	Generic Data Types (GDT)
	Overview of Generic Data Types

	Data Types Belonging to Sequential Function Charts (SFC)
	Overview of the Data Types of the Sequential Function Chart Family

	Compatibility Between Data Types
	Compatibility Between Data Types

	Reference Data Type Declarations
	Reference Data Type Declarations

	Data Instances
	Data Type Instances
	Data Instance Attributes
	Direct Addressing Data Instances

	Data References
	References to Data Instances by Value
	References to Data Instances by Name
	References to Data Instances by Address
	Data Naming Rules

	Programming Language
	Function Block Language FBD
	General Information about the FBD Function Block Language
	Elementary Functions, Elementary Function Blocks, Derived Function Blocks and Procedures (FFBs)
	Subroutine Calls
	Control Elements
	Link
	Text Object
	Execution Sequence of the FFBs
	Change Execution Sequence
	Loop Planning

	Ladder Diagram (LD)
	General Information about the LD Ladder Diagram Language
	Contacts
	Coils
	Elementary Functions, Elementary Function Blocks, Derived Function Blocks and Procedures (FFBs)
	Control Elements
	Operate Blocks and Compare Blocks
	Links
	Text Object
	Edge Recognition
	Execution Sequence and Signal Flow
	Loop Planning
	Change Execution Sequence

	SFC Sequence Language
	General Information about SFC Sequence Language
	General Information about SFC Sequence Language
	Link Rules

	Steps and Macro Steps
	Step
	Macro Steps and Macro Sections

	Actions and Action Sections
	Action
	Action Section
	Qualifier

	Transitions and Transition Sections
	Transition
	Transition Section

	Jump
	Jump

	Link
	Link

	Branches and Merges
	Alternative Branches and Alternative Joints
	Parallel Branch and Parallel Joint

	Text Objects
	Text Object

	Single-Token
	Execution Sequence Single-Token
	Alternative String
	Sequence Jumps and Sequence Loops
	Parallel Strings
	Asymmetric Parallel String Selection

	Multi-Token
	Multi-Token Execution Sequence
	Alternative String
	Parallel Strings
	Jump into a Parallel String
	Jump out of a Parallel String

	Instruction List (IL)
	General Information about the IL Instruction List
	General Information about the IL Instruction List
	Operands
	Modifier
	Operators
	Subroutine Call
	Labels and Jumps
	Comment

	Calling Elementary Functions, Elementary Function Blocks, Derived Function Blocks and Procedures
	Calling Elementary Functions
	Calling Elementary Function Blocks and Derived Function Blocks
	Calling Procedures

	Structured Text (ST)
	General Information about the Structured Text ST
	General Information about Structured Text (ST)
	Operands
	Operators

	Instructions
	Instructions
	Assignment
	Select Instruction IF...THEN...END_IF
	Select Instruction ELSE
	Select Instruction ELSIF...THEN
	Select Instruction CASE...OF...END_CASE
	Repeat Instruction FOR...TO...BY...DO...END_FOR
	Repeat Instruction WHILE...DO...END_WHILE
	Repeat Instruction REPEAT...UNTIL...END_REPEAT
	Repeat Instruction EXIT
	Subroutine Call
	RETURN
	Empty Instruction
	Labels and Jumps
	Comment

	Calling Elementary Functions, Elementary Function Blocks, Derived Function Blocks and Procedures
	Calling Elementary Functions
	Call Elementary Function Block and Derived Function Block
	Procedures

	User Function Blocks (DFB)
	Overview of User Function Blocks (DFB)
	Introduction to User Function Blocks
	Implementing a DFB Function Block

	Description of User Function Blocks (DFB)
	Definition of DFB Function Block Internal Data
	DFB Parameters
	DFB Variables
	DFB Code Section

	User Function Blocks (DFB) Instance
	Creation of a DFB Instance
	Execution of a DFB Instance
	Programming Example for a Derived Function Block (DFB)

	Use of the DFBs from the Different Programming Languages
	Rules for Using DFBs in a Program
	Use of IODDTs in a DFB
	Use of a DFB in a Ladder Language Program
	Use of a DFB in a Structured Text Language Program
	Use of a DFB in an Instruction List Program
	Use of a DFB in a Program in Function Block Diagram Language

	User Diagnostics DFB
	Presentation of User Diagnostic DFBs

	Implicit Type Conversion in Control Expert
	Control Expert Implicit Type Conversion
	Control Expert Differences from IEC Recommendations

	Appendices
	IEC Compliance
	General Information regarding IEC 61131-3
	General information about IEC 61131-3 Compliance

	IEC Compliance Tables
	Common elements
	IL language elements
	ST language elements
	Common graphical elements
	LD language elements
	Implementation-dependent parameters
	Error Conditions

	Extensions of IEC 61131-3
	Extensions of IEC 61131-3, 2nd Edition

	Textual language syntax
	Textual Language Syntax

	Glossary
	Index

