

Vertrieb: Hemsack 27. 59174 Kamen

Telefon: (0 23 07) 9 24 84-0 Telefax: (0 23 07) 9 24 84-19 Internet: www.himpe.de E-Mail: vertrieb@himpe.de

Auswahl der Blendendurchmesser bei Klein-Messstrecken KN

1. Auswahl der Blendendurchmesser bei Flüssigkeiten

Der Blendendurchmesser kann mit Hilfe des äquivalenten Wasserdurchflusses $q_{\text{m, w}}$ aus den Diagrammen auf der Rückseite entnommen werden.

Der äquivalente Wasserdurchfluss lässt sich je nach Vorgabe gemäß der folgenden Tabelle errechnen:

Gegeben		äquivalenter Wasserdurchfluss (kg/h)
Massendurchfluss Betriebsdichte	q _m (kg/h) ρ (kg/m³)	$q_{m,w} = q_m \cdot \sqrt{\frac{1000}{p}}$
Volumendurchfluss Betriebsdichte	q _ν (m³/h) ρ (kg/m³)	$q_{m,w} = q_{v} \cdot \sqrt{1000 \cdot p}$

Beispiel:

Gegeben:
$$q_v = 40 \text{ l/h} = 0.04 \text{ m}^3/\text{h}$$

 $\rho = 880 \text{ kg/m}^3$

$$q_{m,w} = 0.04 \cdot \sqrt{1000 \cdot 880} = 37.5 kg / h$$

Hierfür kann entweder eine Blendenbrücke DN 8 mit Blendendurchmesser zwischen

d = 1,7 mm mit $\Delta \rho$ ca. 300 mbar und d = 2,7 mm mit $\Delta \rho$ ca. 45 mbar

oder eine Blendenbrücke DN 4 mit Blendendurchmesser zwischen

 $\label{eq:def} \begin{array}{ll} d=1,7 \text{ mm} & \text{mit } \Delta \rho \text{ ca. } 250 \text{ mbar} \\ \text{und} & d=2,7 \text{ mm} & \text{mit } \Delta \rho \text{ ca. } 30 \text{ mbar} \\ \text{ausgewählt werden.} \end{array}$

2. Auswahl des Blendendurchmessers bei Gasen und Dämpfen

Der Blendendurchmesser kann mit Hilfe des äquivalenten Wasserdurchflusses $q_{m,\,w}$ aus den Diagrammen auf der Rückseite entnommen werden.

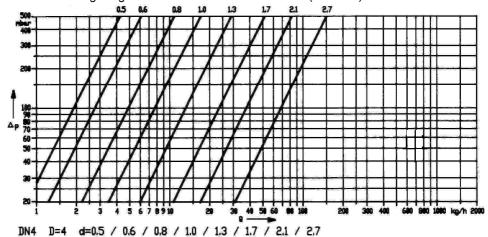
Der äquivalente Wasserdurchfluss lässt sich je nach Vorgabe gemäß der folgenden Tabelle errechnen:

Gegeben		äquivalenter Wasserdurchfluss (kg/h)
Massendurchfluss	q _m (kg/h)	$q_{m,w} = q_m \cdot \sqrt{\frac{1000}{\rho}}$
Betriebsdichte	ρ (kg/m³)	Vρ
Volumendurchfluss	q _v (m³/h)	$q_{m,w} = q_v \cdot \sqrt{1000 \cdot \rho}$
Betriebsdichte	ρ (kg/m³)	
Volumendurchfluss (im Normzustand)	q _n (Nm³/h)	$q_{m,w} = q_n \cdot \frac{\sqrt{1000 \cdot \rho}}{\frac{\rho}{1,013} \cdot \frac{273}{273 + t}}$
Betriebsdichte	ρ (kg/m³)	3,000 2.00
Volumendurchfluss (im Normzustand)	q _n (Nm³/h)	$q_{m,w} = q_n \cdot \frac{\sqrt{1000 \cdot \rho_n}}{\sqrt{\frac{p}{1,013} \cdot \frac{273}{273 + t}}}$
Dichte (im Normzustand) Beispiel:	ρ _n (ka/m³)	γ1,013 273 11

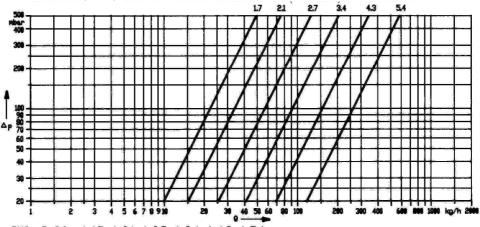
Gegeben:
$$q_n = 400 \text{ l/h} = 0.4 \text{ m}^3/\text{h}$$

 $\rho_n = 1.29 \text{ kg/m}^3$
 $t = 50^{\circ} \text{ C}$
 $p_{abs} = 5 \text{ bar}$

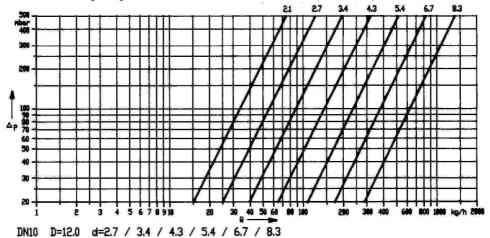

$$q_{_{m,w}} = 0.4 \cdot \frac{\sqrt{1000 \cdot 1.29}}{\sqrt{\frac{5}{1,013} \cdot \frac{273}{273 + 50}}} = 7,03 kg/h$$


Hierfür kann eine Blendenbrücke DN 4 mit Blendendurchmesser

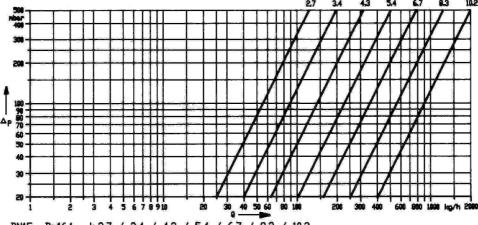
 $d = 1,0 \text{ mm} \qquad \text{mit } \Delta \rho \text{ ca. } 85 \text{ mbar}$ oder $d = 0,8 \text{ mm} \qquad \text{mit } \Delta \rho \text{ ca. } 210 \text{ mbar}$ ausgewählt werden.


Bei der Überschlagsrechnung muss eine Unsicherheit bis zu 20 % des Differenzdrucks berücksichtigt werden.

Zur genauen Bestimmung des Differenzdrucks ist die Klein-Messstrecke zu kalibrieren.



Überschlagsdiagramm für Klein-Messstrecke DN 8 (D=8 mm) bei Wasser 20°C



DN8 D=8.0 d=1.7 / 2.1 / 2.7 / 3.4 / 4.3 / 5.4

Überschlagsdiagramm für Klein-Messstrecke DN 10 (D=12 mm) bei Wasser 20°C

Überschlagsdiagramm für Klein-Messstrecke DN 15 (D=16.1 mm) bei Wasser 20°C

DN15 D=16.1 d=2.7 / 3.4 / 4.3 / 5.4 / 6.7 / 8.3 / 10.2